

Glenbrook Beach Substation

Infrastructure Design Report

21074-RPT-01/ Revision 2.0/ 7-Sep-2022 INSPIRED. AGILE. GENUINE.

Document history and status

Revision	Date	Author	Reviewed by	Approved by	Status
1.0	23/03/22	SRG	AW	SRG	discussion
2.0	07/09/22	SRG	MS	SRG	For consent

Revision details

Revision D	Details
1.0 F	For discussion
2.0 N	NoR Consent application

Table of Contents

1.	Intro	duction3
	1.1	Summary of Site Works 3
	1.2	Site Location & Description
2.	Conce	ept Substation
	2.1	Switchroom Building
	2.2	Transformer Bay
3.	Three	e Waters7
	3.1	Stormwater
	3.1.1	Stormwater Discharge
	3.1.2	Site Coverage
	3.1.3	Stormwater Management - Retention7
	3.1.4	Stormwater Management - Treatment
	3.1.5	Transformer Oil Management
	3.1.6	Flooding & Overland Flow Paths
	3.2	Wastewater
	3.2.1	Sewer Connection
	3.2.2	Waste Water Loading
	3.3	Water Supply
	3.3.1	Water Connection
	3.3.2	Water Demand
4.	Site A	Access
	4.1	Vehicle Crossing & Shared Access
	4.2	Driveway 10
	4.3	Carparking
5.	Earth	works & Soil Conditions11
	5.1	Soil & Geotechnical Conditions11
	5.2	Earthworks 11
	5.3	Silt & Sediment Control 12
6.	Othe	r Considerations
	6.1	Acoustics
	6.2	Fire Engineering
7.	Арре	ndices

1. Introduction

This summary report covers the civil site considerations for the development of a substation at Lot 1003, 27 McLarin Road, Glenbrook Beach. The proposed works is for a 33-11kV indoor switchroom and two outdoor 33-11kV transformers. Lot 1003 is a super-lot within the Kahawhai Development, and is approximately 3358m2 in size.

Counties Energy are allowing for the development with increased load in the area.

A concept design of the substation layout has been determined, subject to change, which provides an indication of size, earthworks, infrastructure needs and is to inform the planning for the site. Based on this, the site is suitable for the development of a new substation.

The conceptual layout can be found in Appendix 1.

1.1 Summary of Site Works

The proposed summary for the substation at lot 1003 27 McLarin Road:

- Construction of an 11kV & 33kV switchroom building, to house GIS switchgear, plus associated protection, control and ancillary panels.
- Construction of two 33-11kV transformer bays.
- Civil site works such as earthworks, stormwater drainage, wastewater drainage and driveways.
- Fencing of the site.

1.2 Site Location & Description

The proposed site is Lot 1003 of the 27 McLarin Road subdivision.

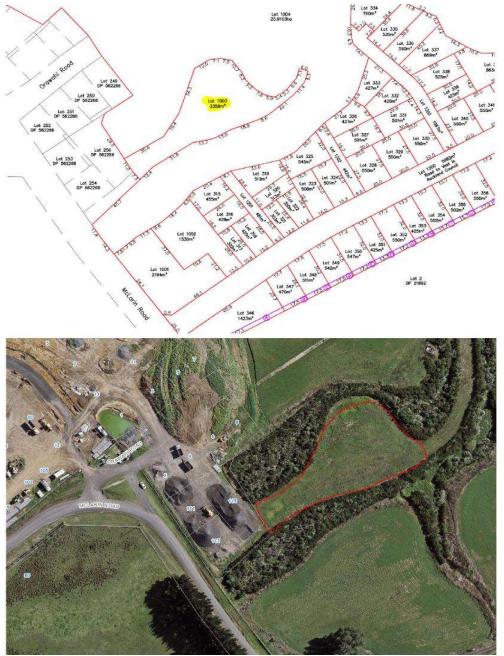
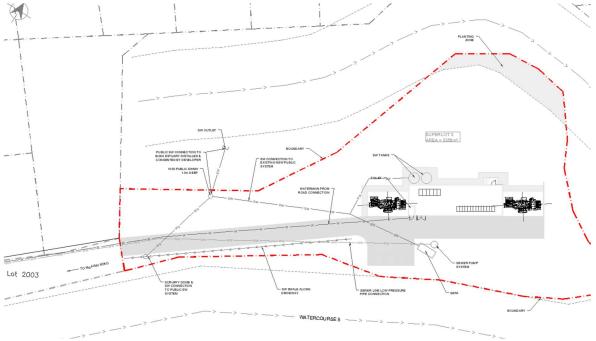


Figure 1.2.1 : Lot 1003 27McLarin Road.

The site is currently a being developed as part of the overall subdivision works for the Kahawhai Point development. The site is likely to be #117 McLarin Road.


Glenbrook Beach Substation / Infrastructure Design Report 21074-RPT-01 - Revision 2.0

2. Concept Substation

The following is the conceptual substation development to aid the planning for the site.

The substation will develop for the middle of the site and have two outdoor transformer bays and a 140m2 switchroom building.

2.1 Switchroom Building

The switchroom building will be in the middle of the substation site. This is similar to the Counties Energy substation at Waiuku. The building will be a single storey with a full cable basement below.

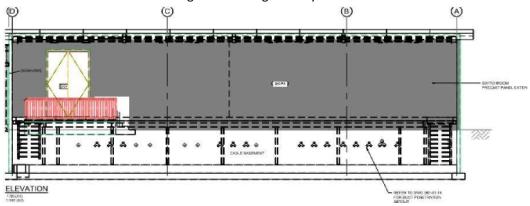


Figure 2.1.1 : Example substation building elevation

Glenbrook Beach Substation / Infrastructure Design Report 21074-RPT-01 - Revision 2.0

The building will house:

- 11kV & 33kV switchgear
- Protection/control and ancillary panels
- Ripple plant
- Toilet

The building will be a precast concrete structure, approximately 21m long by 7.0m wide, with a full basement.

2.2 Transformer Bay

Two transformers will be installed at the site, with concrete foundations and bunding around the perimeter. Where the transformers are close to the boundaries, fire walls will be installed.

3. Three Waters

3.1 Stormwater

3.1.1 Stormwater Discharge

It is proposed that rainwater from the site pavements and roofs will be discharged to the public stormwater system discharging into the gully running past the site. A stormwater connection for the site will be provided by Kahawhai Development Limited on the western side of the site.

3.1.2 Site Coverage

The site impermeable and coverage areas are as follows:

Substation Coverage - 3358m2		
Name	m2	Percentage of Area
Impermeable Site Coverage (Driveways, Buildings)	790m2	24%
Permeable landscaped area	2256m2	76%
TOTAL	3358m2	

3.1.3 Stormwater Management - Retention

The site is required to have hydraulic neutrality, based on the subdivision planning regulations for a SMAF 1 area. The requirements are for detention of the impervious areas for the 95% percentile rainfall event and release over 24 hours.

A covenant for the site also requires 3000 litres of water be available for re-use at the site.

3.1.4 Stormwater Management - Treatment

The site will have low volumes of traffic and will not have any particular requirement for stormwater treatments. Counties Energy propose to install a stormwater swale along the driveway of the site to provide treatment from the driveway areas.

3.1.5 Transformer Oil Management

The transformers on the site will each contain approximately 10,000 litres of oil. It is proposed to provide bunding around the transformers which will provide emergency containment of the volume of oil, plus either 10% extra oil and a contingency for rain or fire-fighting water. The rainwater from the transformer bunded area will be reticulated through a proprietary oil plate separator during normal operation.

3.1.6 Flooding & Overland Flow Paths

Auckland Council GIS maps do not indicate any flooding risk at the site, but do indicate flooding in the drainage gullies either side of the site.



Figure 3.1.5 : Auckland GIS Flood Risk & OLFP

A walk over assessment of the site has been carried out by a civil engineer and there is little risk of global or local flooding. The substation site and location of the proposed development is slighting raised above the surrounding ground level.

3.2 Wastewater

The site is part of a new subdivision development which will be installing a new public low pressure sewer system in McLarin Road.

3.2.1 Sewer Connection

The sewer connection from the site to the low pressure sewer will be via a pump station in the substation site to a proprietary connection to the public waste water line.

3.2.2 Wastewater Loading

The substation site will be an unoccupied facility with a single toilet facility. The substation will have 2-3 maintenance visits per week and therefore the wastewater flows will be insignificant. The #1003 super lot has been modelled by GHD (Letter report 3 February 2022 – ref 125464340) as having three residential sites which would have significantly higher flows than will occur from the substation.

3.3 Water Supply

The site is part of a new subdivision development and will be installing a new public water supply system in McLarin Road.

3.3.1 Water Connection

A new metered water supply connection will be made to the public watermain. A watermain for the site will be installed along the shared access to the substation toilet.

3.3.2 Water Demand

The substation site will be an unoccupied facility with a single toilet facility. The substation will have 2-3 maintenance visits per week and therefore the water demand will be insignificant. The #1003 super lot has been modelled by Riley Consultants (Report "Civil Engineering Assessment Kahawai Point Stage 5, 127 McLarin Road" – dated 15 February 2022, appended to this report) as 540l/day which exceeds the likely demand for the substation of 10l/day.

4. Site Access

4.1 Vehicle Crossing & Shared Access

A residential concrete vehicle crossing and shared access have been constructed for the site off McLarin Road.

4.2 Driveway

A 4.0m wide asphalt driveway will be installed adjacent to the southern boundary to the substation building.

4.3 Carparking

The substation will be an un-manned site, but will be visited regularly by maintenance staff. Four carparks are proposed for the site to accommodate maintenance vehicles.

5. Earthworks & Soil Conditions

5.1 Soil & Geotechnical Conditions

A geotechnical investigation for the site has been carried out by Engineering Geology, and their report dated 25 March 2022 is appended to this report.

The site is suitable for development as a substation, with no particular areas of concern.

No significant earthquake or liquefaction risks was identified at the site.

5.2 Earthworks

The proposed earth works at the site will be related to clearance of building platforms and excavation for the building basement.

The earthworks volumes are as follows:

Cut to waste	700 m3
Imported Fill	325 m3
Area of earthworks	900 m2

Extent of earthworks are shown in the figure below:

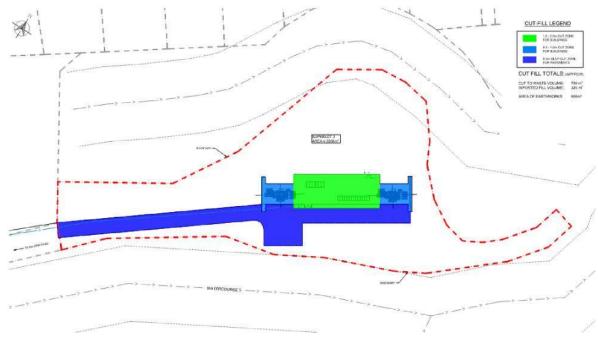


Figure 5.3.1 : Possible earthworks area

5.3 Silt & Sediment Control

The area and volume of earthworks are not significant for this development. Due to the conceptual nature of design a specific ESCP has not been developed. This will be developed during the future stages of the project.

6. Other Considerations

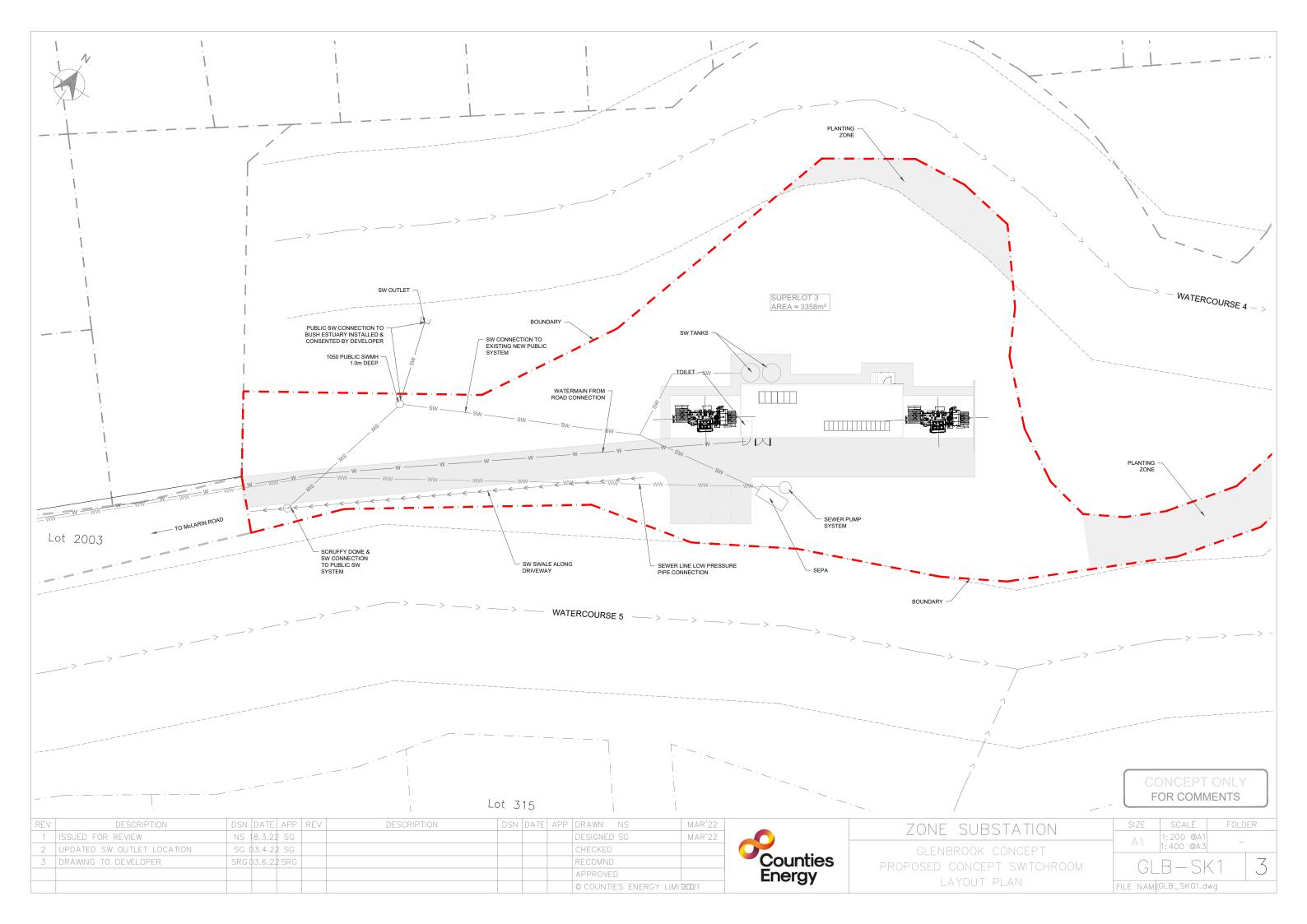
6.1 Acoustics

An acoustic assessment for the site has not been undertaken due to the early stages of the design. The transformers will be placed approximately 40m from the residential property boundaries and this will likely mitigate any noise issues to these properties.

A full acoustic assessment will be produced during the detailed design of the site.

6.2 Fire Engineering

The concept design has considered that that the transformers require to be 20m from any boundary or dwelling, or appropriate fire walls installed. A fire assessment & report will be carried out during the detailed design of the site.



7. Appendices

Appendix 1.	Concept Site Plans Error! Bookmark not defined.
Appendix 2.	Geotechnical Report Error! Bookmark not defined.
Appendix 3.	Riley Consultants Report (with GHD Sewer Modelling Report appended) Error! Bookmark
not defined.	

Appendix 1. Concept Site Plans

Appendix 2. Geotechnical Report

Engineering Geology Ltd

- +64 9 486 2546
- info@egl.co.nz
- Unit 7C, 331 Rosedale Road, Albany, Auckland PO Box 301054, Albany, Auckland 0752

www.egl.co.nz

Ref: 9484 Date: 25 March 2022

Ergo Consulting Limited 116 McLarin Road Glenbrook AUCKLAND 1023

Attention: Mr S Gaskin

Dear Steve,

RE: PROPOSED SUBSTATION DEVELOPMENT 116 MCLARIN ROAD. GLENBROOK Geotechnical Assessment

1.0 **INTRODUCTION**

This report presents the results of a geotechnical investigation for a proposed Substation development at the above address for our client Ergo Consultants Ltd.

The investigation has been carried out to assess the subsoil conditions and provide geotechnical recommendations for the proposed development. We understand that our report will be used for the foundation design and will be submitted to Auckland Council as part of a Building Consent application.

2.0 SITE DESCRIPTION

property The is party of larger block of land currently titled Lot 5000 DP 562266 and 1/2 SH LOT 2003 DP 562266. The lot has a total area of about 35Ha. It is located 85m south of the intersection of McLarin Road with Orawahi Road. The local topography within the property slopes from the centre of the property outwards at an average slope of about 1H:11V.

The Auckland Council GIS database shows no public underground services located within the property.

3.0 **PROPOSED DEVELOPMENT**

We understand that it is proposed to construct a new switch room and transformer yard on the site. The new switch room may have a cable basement of up to 2 m depth.

4.0 **GEOLOGY**

According to the 1:250,000 scale geological map of Auckland published by the Institute of Geological and Nuclear Science the subject site is underlain by the East Coast Bays Formation of the Waitemata Group. These deposits are characterised by a series of interbedded mudstone and sandstones deposited around 20 million years ago and are found under much of the Auckland Metropolitan area. In situ weathering of the usually dark-grey bedrock material has created in most locations, an overburden comprising mixtures of silts, clays and sands, being predominantly orange, brown and grey in colour and often containing hard

dark-brown iron oxide (limonitic) concentrations. Ground conditions encountered on site comprised residual soil of the Waitemata Group consistent with the geological map.

5.0 SITE INVESTIGATION

Our fieldwork was carried out on 15th March 2022. The fieldwork comprised an inspection of the site by a geotechnical technician and the drilling of four hand auger boreholes, designated BH1 to BH4. The boreholes were all drilled to a maximum target depth of 4.8m.

The boreholes were 50 mm in diameter and the *in situ*, undrained shear strengths of the subsoils were measured in the boreholes at approximately 0.3m intervals with a hand operated Pilcon shear vane. Soils recovered from the investigation boreholes was logged in general accordance with the New Zealand Geotechnical Societies "Guideline for the Field Description of Soil and Rock" dated 2005.

The location of the boreholes in relation to the proposed building site and the boundaries of the property are shown on Drawing 9484-1. Descriptions of the soils encountered in the boreholes, along with measured shear vane strengths are presented on the attached borehole log sheets.

6.0 SUBSOIL CONDITIONS

Topsoil was encountered to depths of between 0.3 m and 0.5 m across the site. Below the topsoil, the boreholes encountered residual soil down to the base of the boreholes. Shear vane strengths recorded in-situ ranged from a low of 111kPa to a high of 200kPa + (the maximum able to be measured on the dial).

7.0 GROUND WATER

Groundwater was encountered on the day of drilling at 4.3 m in BH1 with BH2, BH3 and BH4 remaining dry. We anticipate that during periods of wetter weather, the static water level may rise within 1-2 m of the ground surfaces. Given the shallow depth of the underlying transitional materials it is also probable that a shallow perched water table may develop following prolonged or heavy rainfall.

8.0 SITE SOIL CLASS (1170)

In accordance with AS/NZS1170.0 the site soils fall within the Class C classification.

9.0 BUILDING IMPORTANCE LEVEL

We understand that the switchboard building has been designated as having an Importance Level 4 (IL4) in accordance with AS/NZS1170.

10.0 LIQUEFACTION AND LATERAL SPREADING RISK

The hand auger boreholes found that the underlying residual soils comprise very stiff to hard silty clays. Due to the age and plastic nature of the soils, we do not anticipate any liquefaction risk.

11.0 DISCUSSION

The soil type encountered on the site comprised East Coast Bays Formation of the Waitemata Group. These soils are known to be particularly susceptible to volume changes due to changes in the moisture content (i.e. shrink/swell). We therefore recommend that shallow foundations may be designed in accordance with AS2870:2011 for class H1 soils. In this case we recommend that shallow strip and pad foundations should be designed in accordance with AS2870:2011 H1 soil having a minimum depth of embedment of 0.9m.

For lightly loaded structures, not exceeding an average distributed ground bearing pressure of 30kPa, settlement is unlikely to be an issue and therefore shallow foundation may be adopted. For structures with larger foundation loadings, piled foundations are required. Foundations should be designed in accordance with the recommendations within this report.

Where weaker soils are encountered in the foundations, undercut maybe required and the footing brought back to invert level either with well compacted hardfill or with Site Concrete.

We understand that a cable basement may be required. Due to possible shallow groundwater table, any basement excavation should be designed as fully tanked and make provision for buoyancy. For design purposes, the groundwater table depth should be assumed to be approximately 1m from the ground surface. Due to the depth of the groundwater table measured in excess of the proposed basement excavation, it is not anticipated that groundwater drawdown in either the temporary or permanent cases will be an issue and do not require an assessment with respect to the Auckland Councils Unitary Plan.

The basement cut should be adequately retained or battered back to a slope of no greater than 1V:1H as per our recommendations below. It is considered that where batter slopes can't be formed due to proximity to the boundary, then temporary retaining may be required.

12.0 GEOTECHNICAL RECOMMENDATIONS

Based on our discussion above, our geotechnical recommendations for the proposed development are as follows:

- 1) Prior to construction on site the final building foundation and earthwork plans should be reviewed and approved by a Geotechnical Engineer to ensure that our recommendations have been correctly interpreted.
- 2) All foundations, floor slabs and services into the building must be designed for class H1 soils in terms of AS2870:2011.
- 3) Foundations may generally comprise conventional shallow strip or pad footings designed under Ultimate Limit State design for a dependable bearing pressure of 150 kPa (300 kPa ultimate). Footings should be designed as per recommendation 3 above and taken down at least 0.9m below cut ground levels as a precaution against settlement affects associated with seasonal soil shrinkage. If weak ground (such as that encountered within BH6) is encountered in footing excavations, they should be undercut to competent ground and brought back to footing invert level with either well compacted hard fill or mass concrete, subject to specific recommendations by a Geotechnical Engineer.
- 4) Floor slabs on level cut ground may be cast-on-grade provided all vegetation, topsoil and any weak soils are removed and subject to the review and approval of the sub-grade by a Geotechnical Engineer and should be designed for the special provisions of Class H1 soils. The subgrade surface under any foundation and floor slab should not be allowed to dry out or be remoulded by construction work and should be protected with a layer of basecourse, or similar, immediately following excavation and trimming to the design profile. Floor slabs should not be poured on subgrades which have been allowed to dry out and desiccate. Should cracking of clay subgrades of more than 10mm be observed, the advice of a Geotechnical Engineer should be obtained before placing hardfill or pouring slabs.

- 5) Care should be taken with disposal of storm water to prevent any uncontrolled concentrated discharge of water which could exacerbate shrinkage and swell movement. Stormwater from roofs, footpaths and the driveway should be piped to discharge into existing public services, in accordance with Auckland Council requirements.
- 6) The soils on the site are considered to be highly susceptible to seasonal shrinkage and swelling. The effects of which can be exacerbated by trees (especially exotic varieties), hedges and plants having a high-water demand, which, should not be planted near the building as they can withdraw moisture from the soil and cause any shallow foundations and ground bearing floor slabs to settle. As a guide to class H1 soils, trees should be planted no closer to the building than the mature height of the tree.
- 7) Our experience with the soils in this area indicates that when they are exposed to the weather or heavy machinery trafficking their strengths may be significantly compromised, particularly during wet site conditions. We recommend that a CBR value of 3% is adopted for the design of pavements within the site. We also recommend that the carpark and building platform areas are only trimmed to final levels immediately prior to metalling and that at all times the site is shaped to avoid water ponding during rain.
- 8) During building excavation, earthworks and foundation construction the site should be examined by a Geotechnical Engineer or Engineering Geologist to confirm the nature of the subgrade and measure foundation and soil strengths, test fill compaction as well as to provide advice on any other geotechnical issues which may become apparent during construction.

Where Engineering Geology Ltd is required to carry out site inspections during construction and provide certification or a Producer Statement – Construction Review, it is requested that we be supplied a copy of the Building Consent Conditions. We request that a minimum notification of 24 hours be given for any site inspections and note that we will be unable to issue a Producer Statement without site inspections at the appropriate stages during construction.

We note that site inspections during construction and associated certification are not included within the budget for the preparation of the geotechnical report and will be subject to additional costs

13.0 LIMITATIONS

Recommendations and opinions in this report are based on the data from four hand auger boreholes. While the nature and continuity of the subsoil conditions away from the boreholes is inferred it is possible that actual conditions could vary from those assumed. Should variations in subsoil conditions from those described in this report be found to exist, then it is essential that Engineering Geology Ltd be contacted as it may affect the design parameters recommended above.

This report has been prepared solely for the benefit of Ergo Consultants Limited as our client with respect to the brief to assess the subsoil conditions for the proposed development and Engineering Geology Ltd accepts no liability to any other party in relation to this report. The reliance by other parties on the information or opinions contained in this report shall, without our prior review and agreement in writing, be at such parties' sole risk.

We would be pleased to provide any further advice you may require.

Yours faithfully ENGINEERING GEOLOGY LIMITED

Prepared by:

122

Reviewed by:

Nat

C. Lee (Geotechnical Engineer)

P. Carter (CPEng)

Enclosure: Borehole log Terminology Borelogs – BH's 1 to 4 Drawings 9484-1

Engineering Geology Ltd +64 9 486 2546					Н	ANE		۱U	GEI	२	BOREHOLE No.: BH1			
P	Geotechnical, Earthquake info@egl.co.nz 9 Unit 7C, 331 Rosedale Road, A PO Box 301054, Albany, Auckl	lbany, and 07	Auckland 52	LOG					-	SHEET 1 OF 1				
PR	and Dam Engineers www.egl.co.nz				Job No.: 9484 DATE: 15/03/2022									
LO	CATION: 116 Mclarin Road, Glen Brook				HOLE DEPTH: 4.8m									
	GROUND: I'UM: Auckland 1946				COOI GRID		ATE:		East 1 ZTM 2		9.3 Noi	th 588	6166.0	
											RREC			
L UNI			8 S		_	VCY /		NTE	Ē	SHEAR STRENGTH (kPa) Field Vane (BS 1377) ORemoulded Field Vane				
GICA	SOIL MATERIAL DESCRIPTION	H/R	HICL	٦ ۳	MOISTURE CONDITION	ISTEI TY	LES	R CO	RLE					FIELD TESTS
GEOLOGICAL UNIT		DEPTH / RL	GRAPHIC LOG	DEPTH (m)		CONS	AMP	VATE %)	SEEPAGE / WATER LEVEL	ORei 5			Vane 50	
0	Organic SILT; light brown. Hard, moist, low plasticity.	0.0	$\overline{q}p = \overline{q}p$		20		0 O	> ບ	σ >					
TS			⊵ TS : TS TS	_										
	Silty CLAV: dark brown Hard maint moderate plasticity	0.3	<u>e sue</u> <u>dus dus</u>											SV: 0.3m,
	Silty CLAY; dark brown. Hard, moist, moderate plasticity.	-0.0		-	-									UTP
			× × × ×											SV: 0.6m,
				-										UTP
			× × v	-										
			×	1 -		Н								SV: 0.9m, UTP
		<u>1.1</u> -1.1												
				-										SV: 1.2m, 200+ kPa
		1.4	× × ×											
	light grey, orange	-1.4	-1.4											SV: 1.5m,
	trace sand (f)	1.6 -1.6	× ×	-										200+ kPa
		1.8		-							0			SV: 1.8m,
	very stiff Clayey SILT; light grey, orange. Very stiff, moist, low plasticity.	-1.8 1.9 -1.9	<u> </u>											179 / 69 kPa (2.6)
	Clayey SIL I; light grey, orange. Very still, moist, low plasticity.			2 _	м									
			× 								0		•	SV: 2.1m, 166 / 62 kPa (2.7)
Group		grey $\begin{array}{c c} & & & & & \\ \hline & & & & & \\ \hline & & & & & \\ \hline & & & &$			Ō		٠	SV: 2.4m, 168 / 75 kPa (2.2)						
nata (light grey													
Waitemata			<u></u> <u></u> ×								Ö	•		SV: 2.7m,
>			<u>بد پ</u> ت د ک ب	-	-									145 / 74 kPa (2.0)
				3 _							0			SV: 3.0m,
														139 / 79 kPa (1.8)
			× 	-	1									S\/: 3 3m
		3.4	، <u>ب</u> ے ^م یر ہے بے بے کے	-		VSt					Ç	•		SV: 3.3m, 146 / 72 kPa (2.0)
	light grey, orange	-3.4												
				-	1						0	•		SV: 3.6m, 142 / 63 kPa (2.3)
		3.8		-	4				2022					
	light grey	-3.8	 ^ 						4.30m, 15/03/2022	(Э	•		SV: 3.9m, 132 / 54 kPa (2.4)
	wet	4.0		4 _					Эm, 1:					102 / 04 NI d (2.4)
				-	w				4.3(0	•		SV: 4.2m,
	saturated, seepage encountered @4.3m	4.3 -4.3							\triangleleft					126 / 60 kPa (2.1)
			× <u>*</u> ***********************************	-	1									SV: 4.5m,
				-	s					C	,	•		120 / 46 kPa (2.6)
	<u> </u>	EOH	: 4.80 m		<u> </u>	I				: /	:		: :	SV: 4.8m, 123 / 49 kPa (2.5)
	ES: B 4.8m (Target Depth). Coordinates gathered from Google Earth.							GGI	ED:	SK				
							С	IECI	KED:				D	RILL TYPE: 50mm Hand Auger

EGL - Hand Auger - Test Pit v8 - 17/03/2022 11:24:41 AM - Produced with Core-GS by Geroc

Γ	Engineering Geology Ltd J +64 9 486 2546 M info@egl.co.nz				Н	ANE) A	U	GEI	R	BOREHOLE No.: BH2			
E	Geotechnical, Earthquake and Dam Engineers www.egl.co.nz	lbany, and 07	Auckland 52	LOG							SHEET 1 OF 1 Job No.: 9484			
	DJECT: 116 Mclarin Road				DATE: 15/03/2022									
	CATION: 116 Mclarin Road, Glen Brook GROUND:				HOLE DEPTH: 4.8m COORDINATES: East 1752363.9 North 5886190.0									0
	rum: Auckland 1946				COORDINATES: East 1/52363.9 North 5886190.0 GRID: NZTM 2000									
F						1		z					VANE	
AL UN		<u>ب</u>	LOG	(ωZ	ENCY			EVEL	SHE		strei (Pa)	NGTH	
OGIC	SOIL MATERIAL DESCRIPTION	DEPTH / RL	GRAPHIC LOG	DEPTH (m)	DITIO	SISTE	SILES	5 H	AGE ER LI				1377) d Vane	FIELD TESTS
GEOLOGICAL UNIT		DEP	GRA	DEP1		CONSISTENCY / DENSITY	SAM	MAI (%)	SEEPAGE / WATER LEVEL	5		100	150	
	Organic SILT; light brown. Hard, moist, low plasticity.	0.0	<u>⊿∧ ⊴∧</u> ⊵ TS											
TS			[≞Ts	-										
	Silty CLAYL; light brown. Hard, moist, moderate plasticity.	0.3	<u>4646</u> _ <u>xv</u>											SV: 0.3m, UTP
			X Y	-										
			× × ×	-										SV: 0.6m,
			× × ×			н								200+ kPa
				-										SV: 0.9m,
			× ×	1 -							_			200+ kPa
														sV: 1.2m,
			× × × ×	-										UTP
ŀ	 light grey, orange	1.4 -1.4 1.5	× ×	-										
	very stiff	-1.5	X X							(•	SV: 1.5m, 168 / 54 kPa (3.1)
	Clayey SILT; light grey, orange. Very stiff, moist, low plasticity.	1.7	<u>1.7</u>											
	Clayey SILT, light grey, orange. Very Suit, moist, low plasticity.	-1.7	<u> </u>	-						0			•	SV: 1.8m, 146 / 45 kPa (3.2)
		نچ" ب " ن چ نجا	× 	2 _										
			×`×> ×× 	_					red	0		•		SV: 2.1m,
-		tt grey -2.2		-	м				Not Encountered					126 / 42 kPa (3.0)
dno				-					Vot En	0				SV: 2.4m,
Waitemata Group														115 / 46 kPa (2.5)
litema									Groundwater					SV: 2.7m,
Ŵ			<u> </u>	-					0	C		Ī		123 / 48 kPa (2.6)
+	light grey, orange	2.9 -2.9												
			× <u>×</u> × × × × × ×	3 _						0		•		SV: 3.0m, 119 / 43 kPa (2.8)
	_ light grey	3.2		-		VSt								
			× <u>×</u> × × × ×							C)	•		SV: 3.3m, 126 / 48 kPa (2.6)
				-										
			× <u>×</u> × × × × × ×	-						C		•		SV: 3.6m, 112 / 46 kPa (2.4)
				-						Ċ)	•		SV: 3.9m,
			<u>نے ہے</u> ہے ہے	4 _										108 / 49 kPa (2.2)
											0			SV: 4.2m,
											Ú			112 / 62 kPa (1.8)
╞	wet	4.4 -4.4		-							_			SV/: 4 Em
				-	w						0	•		SV: 4.5m, 115 / 65 kPa (1.8)
		4.8 EOH	: 4.80 m							: :	<u></u> .	:	: :	SV: 4.8m, 111 / 57 kPa (1.9)
NOT E.O.	ES: B 4.8m (Target Depth). Coordinates gathered from Google Earth.							GGI	ED:	SK				
							Cł	IEC	KED:				[DRILL TYPE: 50mm Hand Auger

► FGI Engineering Geology Ltd → +64 9 486 2546 ■ info@egl.co.nz					н	ANE			GE	R	BOREHOLE No.: BH3			
E	Geotechnical, Earthquake and Dam Engineers Geotechnical, Earthquake Geotechnical, Earthquake	Albany, J land 07	Auckland 52		LOG SHEET 1 OF 1 Job No.: 9484									
	OJECT: 116 Mclarin Road				DATE: 15/03/2022									
	CATION: 116 Mclarin Road, Glen Brook GROUND:								8m East 1	752389	.6 Nor	th 588	6198.8	3
	TUM: Auckland 1946				GRID	:			ZTM					
- UNIT		.	g					NTEN	SEEPAGE / WATER LEVEL	CORRECTED VANE SHEAR STRENGTH (kPa)				
GEOLOGICAL UNIT	SOIL MATERIAL DESCRIPTION	DEPTH / RL	GRAPHIC LOG	ш Н	TURE	ISTEN ITY	LES	R CO	AGE /	●Fiel	d Vane	(BS 1		FIELD TESTS
GEOLO		DEPT	GRAP	DEPTH (m)	MOIS ⁻	CONSISTENCY / DENSITY	SAMP	WATE (%)	SEEP. WATE	ORer 50	noulde) 1(vane 50	
_	Organic SILT; light brown. Hard, moist, low plasticity.	0.0	<u>⊴∧ ⊴∧</u> ⊵TS											
TS			<u>an</u> <u>an</u> IS an an	-										
Ċ			⊵ IS ; ≝ то	-										SV: 0.3m, UTP
	Silty CLAY; light brown. Hard, moist, moderate plasticity.	0.5 -0.5	<u>a an</u> ' a 											SV: 0.6m,
			× × ×	-		н								UTP
			× × × ×	-										sV: 0.9m,
		×	× 	1 _										200+ kPa
		1.2	× ×	-							0		•	SV: 1.2m,
	very stiff	-1.2												169 / 80 kPa (2.1)
			× × ×	-							Ö		•	SV: 1.5m, 157 / 72 kPa (2.2)
	Clayey SILT; light brown. Very stiff, moist, low plasticity.	1.6 -1.6	<u>ب</u> یہ ہے تک دید پے ت	-										13/ / /2 Ki a (2.2)
			× × ×	-							0		•	SV: 1.8m, 154 / 69 kPa (2.2)
				2 _	2 _				Intered					
										(Э		•	SV: 2.1m, 151 / 57 kPa (2.6)
	light grey	-2.2	<u>نے تے تھے</u> میں بیے ہے	-					Not Encountered					
dno				-	- M						0	•		SV: 2.4m, 139 / 60 kPa (2.3)
ata Gr				-					Groundwater					01/ 0.7
Waitemata Group									ũ)	•		SV: 2.7m, 129 / 54 kPa (2.4)
>			××× ××	3 _		VSt								SV: 3.0m,
	Silty CLAY; light grey. Very stiff, moist, low plasticity.	3.1 -3.1	×× × ×	0						0				119 / 48 kPa (2.5)
			x ×	-						C		•		SV: 3.3m,
		3.5	× × × ×	-										123 / 51 kPa (2.4)
	Clayey SILT; light grey. Very stiff, moist, low plasticity.	-3.5		-						Ċ		•		SV: 3.6m,
				_										128 / 49 kPa (2.6)
			×× × × ×	_						C	D	•		SV: 3.9m, 136 / 54 kPa (2.5)
				4 _										1007011110(2.0)
				-						(С	•		SV: 4.2m, 142 / 57 kPa (2.5)
				-										
				_								•		SV: 4.5m, 137 / 54 kPa (2.5)
		4.0	<u>~</u>	_										
		4.8 EOH	4.80 m		L	1	1			_ : ;	_ : :	`	<u>: :</u>	SV: 4.8m, 126 / 51 kPa (2.5)
NO	res:						LC	GGI	ED:	SK				
	.B 4.8m (Target Depth). Coordinates gathered from Google Earth.								KED:				D	RILL TYPE: 50mm Hand Auger
														5 ·

	► FGI EGI Engineering Geology Ltd → t64 9 486 2546 → info@egl.co.nz				HAND			JGE	R	BOREHOLE No.: BH4				
E	Geotechnical, Earthquake VInit 7C, 331 Rosedale Road, A PO Box 301054, Albany, Auckl	lbany, and 07	Auckland 52	LOG						SHEET 1 OF 1 Job No.: 9484				
PR	OJECT: 116 Mclarin Road				DATE	:		15/03/	2022	1000 1				
	CATION: 116 Mclarin Road, Glen Brook GROUND:				HOLE DEPTH: 4.8m									
	TUM: Auckland 1946				COORDINATES: East 1752374.6 North 5886213.2 GRID: NZTM 2000									
Ļ							ENT		CO		ED VANE			
SAL UI	SOIL MATERIAL DESCRIPTION	님	DO1 :	Ê	шN	ENC	S		30	(kP	'a)			
GEOLOGICAL UNIT		DEPTH / RL	GRAPHIC LOG	DEPTH (m)	MOISTURE CONDITION	ISIST ISITY	IPLE:	(%) SEEPAGE / WATER LEVEL	●Fie ORe		(BS 1377) Field Var			
GEO		DEF	GR/	DEP	<u></u> <u> </u> <u> </u>	бщ	SAN WA	See Na	5	i0 10	0 150			
	Organic SILT; light brown. Hard, moist, low plasticity.	0.0	<u>⊴n sn</u> ⊵ TS :											
TS		0.3	<u>an</u> TS an <u>an</u>	-								01/ 0.0		
	Silty CLAY; light brown. Hard, moist, moderate plasticity.	-0.3	 	-								SV: 0.3m, UTP		
			× ×											
			× •	-								SV: 0.6m, UTP		
			x X X Y	-		н								
			<u>×</u> ×									SV: 0.9m, UTP		
		1.1	~ 	1 _	1									
	light grey, orange	-1.1	<u>x v</u> x	-	-							(SV: 1.2m, 200+ kPa		
			× × × ×	-								2001 N 4		
	very stiff	1.5 -1.5	× ×	-						0		SV: 1.5m,		
	light brown, orange	1.6 -1.6	_X _X									169 / 80 kPa (2.1)		
			× ×		VSt				Ō	•	SV: 1.8m,			
	Clayey SILT; orange, red. Very stiff, moist, low plasticity.	1.9 -1.9	× × × × ×									165 / 72 kPa (2.3)		
		2.1		2 -				å				(SV: 2.1m,		
	hard	-2.1	<u>بہ</u> تھے میں میں م	-	-			ountere				200+ kPa		
dn	_ orange	2.3 -2.3						Not Encountered				sV: 2.4m,		
a Gro			× × × × × ×	-	M	Н						200+ kPa		
Waitemata Group		2.7	<u> </u>	-	-			Groundwater				0) / 0.7		
Wa	very stiff	-2.7		-				Ū		0	•	SV: 2.7m, 157 / 54 kPa (2.9)		
		2.9 -2.9												
			× <u>×</u> × <u>×</u> ×× ×	3 _						0	•	SV: 3.0m, 139 / 59 kPa (2.4)		
				-										
			× × × × × ×							0	•	SV: 3.3m, 134 / 54 kPa (2.5)		
			<u> </u>	-										
			×	-					0)	•	SV: 3.6m, 128 / 46 kPa (2.8)		
			×× ××	-		VSt								
			°							D	٠	SV: 3.9m, 136 / 49 kPa (2.8)		
				4 _								130749 KFa (2.0)		
			() (-					С		•	SV: 4.2m,		
			× × × ×									119 / 42 kPa (2.8)		
			<u>→</u> → → > → → →	-	1					•	•	SV: 4.5m,		
			× × * × * × ×	-	-							122 / 48 kPa (2.5)		
		4.8	2 <u> </u>									SV: 4.8m,		
_		EOH	: 4.80 m	_	_	_		_		_		112 / 38 kPa (2.9)		
NO.	res:						LOG	GED:	SK					
	B 4.8m (Target Depth). Coordinates gathered from Google Earth.							CKED:				DRILL TYPE: 50mm Hand Auger		
								SILU.				E. LE FITE. John Hand Augel		

Appendix 3. Riley Consultants Report (with GHD Sewer Modelling Report appended)

CIVIL ENGINEERING ASSESSMENT KAHAWAI POINT STAGE 5 127 MCLARIN ROAD, GLENBROOK

Engineers and Geologists

RILEY CONSULTANTS LTD New Zealand Email: riley@riley.co.nz Email: rileychch@riley.co.nz Web: www.riley.co.nz AUCKLAND 4 Fred Thomas Drive, Takapuna, Auckland 0622 PO Box 100253, North Shore, Auckland 0745 Tel: +64 9 489 7872 Fax: +64 9 489 7873 CHRISTCHURCH 22 Moorhouse Avenue, Addington, Christchurch 8011 PO Box 4355, Christchurch 8140 Tel: +64 3 379 4402 Fax: +64 3 379 4403

CIVIL ENGINEERING ASSESSMENT KAHAWAI POINT STAGE 5 127 MCLARIN ROAD, GLENBROOK

Report prepared for:

Kahawai Point Development Ltd

Report prepared by:

Luke Gordon, Principal Engineer, CPEng

rach

Report reviewed and approved by:

Steven James, Project Director, CPEng

.

Report reference:

Date:

Copies to:

210359-J

15 February 2022

Kahawai Point Development Ltd

Electronic copy

Riley Consultants Ltd

Electronic copy

Issue:	Details:	Date:
1.0	Civil Engineering Assessment	10 February 2022
2.0	Re-Issue	15 February 2022

Contents

1.0 Introdu	uction	1
2.0 Site D	escription and Proposed Development	1
3.0 Propos	sed Engineering Works	2
3.1 Roa	ding	3
3.1.1	Roading Layout and Design	3
3.1.2	Road Cross Section	
3.1.3	JOAL Cross Section	3
3.1.4	Surface Water Collection and Treatment	4
3.1.5	Overhead Power Relocation	4
3.2 Stor	mwater	
3.2.1	Overland Flow Paths	5
3.2.2	Stormwater Management	6
3.2.3	Raingardens	7
3.2.4	Stormwater Reticulation and Outfalls	9
3.3 Was	stewater	
3.3.1	Existing Network and Capacity	10
3.3.2	Proposed Demand	
3.3.3	Proposed Network	.11
3.4 Wat	er Supply	.12
3.4.1	Existing Network	.12
3.4.2	Proposed Demand	12
3.4.3	Proposed Network	12
4.0 Conclu	usions	.12
4.1 Stor	mwater	.13
4.2 Was	stewater	. 13
4.3 Wat	er Supply	.13
5.0 Limitat	tion	. 14

Appendices

- Appendix A: GHD Low Pressure Sewer Report
- Appendix B: Stormwater Design Calculations
- Appendix C: Overland Flow Path Calculations
- Appendix D: Correspondence with Auckland Transport Consultant
- Appendix E: Watercare Planning Assessment Forms
- Appendix F: RILEY Dwgs: 210359-350 to -374 (23No.)

AUCKLAND

RILEY CONSULTANTS LTD New Zealand Email: riley@riley.co.nz Email: rileychch@riley.co.nz Web: www.riley.co.nz

AUCKLAND 4 Fred Thomas Drive, Takapuna, Auckland 0622 PO Box 100253, North Shore, Auckland 0745 Tel: +64 9 489 7872 Fax: +64 9 489 7873

CIVIL ENGINEERING ASSESSMENT KAHAWAI POINT STAGE 5 127 MCLARIN ROAD, GLENBROOK

1.0 Introduction

The following report has been prepared by Riley Consultants Ltd (RILEY) at the request of Kahawai Point Development Ltd (KPDL). It presents the results of a civil engineering assessment to support a land use resource consent application to Auckland Council (Council). This assessment outlines the proposed infrastructure required to develop a residential subdivision at the above address. The subdivision will form part of the wider precinct development known as Kahawai Point, of which Stages 1-3 are complete and Stage 4 is under construction.

A separate application has been lodged with Council for an earthworks resource consent for the development (BUN60390577), RILEY have prepared two reports in support of that application:

- RILEY Ref: 210359-B Stage 5 Earthworks Assessment
- RILEY Ref: 210359-H Section 92 Response Earthworks

2.0 Site Description and Proposed Development

The main development area (the site) is approximately 4ha, located at the south-western corner of 127 McLarin Road. McLarin Road borders the site to the west. The ground is gently to moderately sloping, and generally falls towards two watercourses, which border the site to the north. The watercourses are identified as Watercourse 5 and 6 on the RILEY and Boffa Miskell (Boffa) plans. Auckland Geomaps identifies an overland flow path (OLFP) entering the site's southern boundary and discharging into Watercourse 5 to the north. The OLFP is identified as Watercourse 5A on the attached drawings and is classed as an ephemeral stream in the Boffa Ecology Report (submitted with the earthwork consent application). The development also includes an additional ~ 3,400m² strip of land located to the north of Watercourse 5, and south of Watercourse 4.

Part of the site is currently being used as a site compound relating to construction works on Stage 4. There is a large clay stockpile and smaller topsoil stockpile located centrally in the site, and a sediment pond to the north, with the remainder of the site comprising pastureland.

The location of the site in relation to the wider development is shown in Figure 1. Refer RILEY Dwg: 210359-351 in Appendix F for the existing site plan.

Figure 1: Site Location

STAGE LOCATION

NOTE: AERIAL IMAGE SOURCED FROM LINZ

The proposed development will consist of a total of 52 lots, comprising 48 standard residential lots, one residential superlot, two commercial lots, and one superlot (Superlot 3) – which is to be located on the strip of land to north of Watercourse 5. The standard residential lots vary in size from 300m² to 860m² approximately. A new road will be formed running west/east and adjoining McLarin Road via a new roundabout intersection. The road will provide access to the proposed lots and in the future, it is envisaged the road will be extended to access additional stages of the wider development to the east. Watercourse 5A will be filled in and overland flow re-routed through the site, whilst watercourse will be unaffected by earthworks. A 3.0m wide coastal shared path is proposed running the length of Watercourse 5 (southern side), in accordance with precinct plans, refer to Boffa plans for further details of this path.

Refer RILEY Dwg: 210359-352 for the development layout.

3.0 Proposed Engineering Works

The following sections outlines the proposed engineering works to be undertaken in relation to the development and include a consideration of the following:

- i) Roading
- ii) Stormwater and Overland Flow Paths
- iii) Wastewater
- iv) Water Supply

3.1 Roading

3.1.1 Roading Layout and Design

As noted above, a new (public) road will be formed which will provide access to the new lots from McLarin Road, the road location is in accordance with the Glenbrook 3 precinct plan. A new roundabout will be formed where the new road intersects with McLarin Road. Commercial Lot 1 and Superlot 3 will be accessed directly from McLarin Road by vehicle crossings, whilst the balance of lots will be accessed from the new road. Most of the lots will have direct access onto the new road through individual vehicle crossings, however, there are 16 rear lots which will be accessed by three new jointly owned access lots (JOAL) which will connect to the new road. It is proposed to provide four off-street parallel car parks along the new road alignment. Refer to RILEY Dwg: 210359-352 for the roading and car park layout.

The new road will be approximately 360m and will have a vertical longitudinal geometry which is gently to moderately sloping, falling to a sag point at approximately chainage 125m at a max grade of 5%. The sag point corresponds with an overland flow path which runs south-north through the site. Refer to RILEY Dwgs: 210359-355 and -356 for the road and JOAL long sections.

The proposed roundabout design has been developed by the transportation engineers Eliga and PTM Consultants, in consultation with Auckland Transport (AT). Refer to the PTM/Eliga drawings for further details of the McLarin Road intersection.

3.1.2 Road Cross Section

A 17.0m wide road reserve is proposed, the road section has been developed by PTM/Eliga in consultation with AT. The road cross section is shown on RILEY Dwg: 210359-357, and consists of the following:

- 7.0m wide carriageway way (2 x 3.5m lanes)
- 2 x 2.2m wide berm/tree pit/parking/rain garden corridor
- 2 x 1.8m wide footpath
- 2 x 1.0m wide rear service berm

In addition, the 1.8m wide footpath will continue along the eastern side of McLarin Road along the site frontage, creating a link back to existing Stage 4 footpath further to the north.

3.1.3 JOAL Cross Section

As noted above, three No. JOAL's are proposed to access the rear lots. The JOAL cross sections are shown on RILEY Dwg: 210359-358, and consists of the following:

- JOAL 1 and 2: 8.0m total width:
 - o 0.5m berm,
 - 5.5m carriageway,
 - o 2.0m tree pit/rain garden corridor
- JOAL 3: 9.5m total width:
 - o 1.5m footpath,
 - 2.0m tree pit/rain garden corridor

- 5.5m carriageway,
- **0.5m berm**.

3.1.4 Surface Water Collection and Treatment

Surface runoff collected within the Road reserve and JOAL's will be directed by kerb and channel and discharge overland into one of ten rain garden devices. Five of the rain gardens will be located in the berm areas of the road reserves (including one on McLarin Road) and will be owned and maintained by AT. The other five will be located within the JOAL berms and will be privately owned. Refer RILEY Dwg: 210359-360 for the preliminary raingarden locations.

Rain gardens were also utilised on Stage 4, however for Stage 5 the number of rain gardens has been minimized, and thus the catchment area and size of the devices has increased compared to Stage 4. We understand this is an AT general preference to have fewer and larger devices. Equally, prefabricated rain garden modules will be avoided for the public rain gardens, in favour of a non-modular in-situ design, in accordance with AT preferences.

The larger device size and non-modular design will optimise the ongoing maintenance efficiency and treatment performance of the public rain gardens. James Taylor of AWA Environmental (acting on behalf of AT's stormwater consultant), has provided provisional approval of the raingarden concept, refer correspondence in Appendix D.

The private raingardens within the JOALS will have much less contaminant load (less traffic) and therefore less maintenance requirements compared to the public ones. The private rain gardens may consist of modular units (subject to detailed design).

The typical public rain garden details are shown on RILEY Dwg: 210359-363 and discussed further in Section 3.2.3.

3.1.5 Overhead Power Relocation

An overhead power pole located on McLarin Road clashes with the proposed roundabout intersection and thus will require relocation. Counties Energy Ltd (CEL) have advised they intend to underground the overhead lines on McLarin Road, and potentially divert the cables to the other side of the road. The diversion/undergrounding works will form part of the subdivision power reticulation works, details of which will be developed with CEL and confirmed at EPA stage.

Refer to RILEY Dwg: 210359-351 and -352 for the location of the overhead power lines requiring diversion.

3.2 Stormwater

3.2.1 Overland Flow Paths

The development finished contours will maintain (approximately) the existing catchment areas to Watercourse 5 and 6 (which will be unaffected by the earthworks), thus mimicking the existing flow patterns on the site and maintaining base flow to those watercourses. As discussed, there is an existing OLFP (Watercourse 5A) that enters the site at the southern boundary (149 McLarin Road), and discharges to Watercourse 5 to the north – refer location in Figures 2 and 3. The existing OLFP will be filled and alignment within the site modified slightly to align with the proposed lot boundaries. The proposed finished surface has been developed to maintain the existing OLFP entry and exit points from the site and ensure the spill level (RL 20.25m) at the southern boundary entry point is not increased, thus ensuring no additional localised flooding within 149 McLarin Road property.

A grassed trapezoidal channel will be formed as part of the bulk earthworks to accommodate overland flow. The channel will be divided into two segments, OLFP 1, which will run from the southern boundary to the (future) road reserve, and OLFP 2 from the new road reserve to Watercourse 5. The channel centreline will be aligned with the proposed lot boundaries, such that 50% of the channel cross section lies within each lot. The channels have been specifically designed to convey the 1% Annual Exceedance Probability (AEP) flows based on RILEY hydrological assessment and considers the post-development flows from the future residential development at the site.

The proposed road has been designed with a sag point coinciding with OLFP 1, such that most of the new road overland flow will be directed through OLFP 2. A small catchment at either end of the new road which will drain to the west (McLarin Road), and to the east.

OLFP 1 and 2 details are presented in the tables below and shown on RILEY Dwg: 210359-360, the overland flow path layout is shown on RILEY Dwg: 210359-361. RILEY OLFP calculations are included in Appendix C.



Figure 3: Existing OLFP (Watercourse 5a) – Looking Upstream

Table 1: OLFP Hydrological Analysis

Name	127 McLarin Road Catchment Area m ² (impervious)*	127 McLarin Road Catchment Area m ² (pervious)*	149 McLarin Road Catchment Area m ² (impervious)	149 McLarin Road Catchment Area m ² (pervious)	1% AEP Flow (m ³ /s)
OLFP 1	0	3,394	0	23,566	0.696
OLFP 2	9,855	9,385	0	23,566	1.083

*Post development – Stage 5 subdivision

Table 2:	OLFP -	Trapezoidal	Channel	Design
----------	--------	-------------	---------	--------

Name	Surface Material	Longitudinal Gradient	Base Width	Side Slopes	1% AEP Water Depth	Water Surface Flow Width	1% AEP Velocity
OLFP 1	grass	1%	0.5m	1:5	0.32m	3.7m	1.06m/s
OLFP 2	grass	1%	0.5m	1:5	0.39m	4.4m	1.19m/s

At the northern extent of OLFP 2 (where it connects to Watercourse 5) the proposed gradient of the flow path increases to approximately 1v:4h. To mitigate the potential for localised scour during flood events, it is proposed to line this section of the OLFP with gabion rock (Dn 200mm, 400mm thick) on a geotextile membrane.

3.2.2 Stormwater Management

In accordance with the Council approved Kahawai Point Stormwater Management Plan (SMP) prepared by CKL (July 2016), mitigation measures are required to achieve the following stormwater outcomes for the development:

• Retention of runoff generated from impervious area from the 5mm runoff event in accordance with Auckland Unitary Plan Stormwater Management Area Flow 1 (SMAF 1) rules.

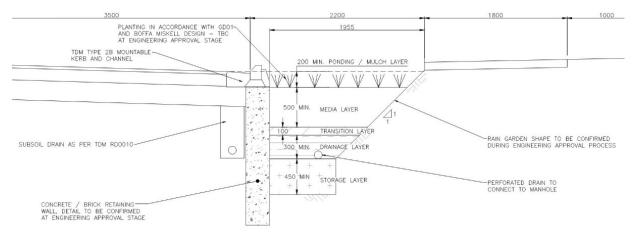
- Detention of runoff generated from impervious area from the 95% percentile rainfall event and release over a 24-hour period, in accordance with SMAF 1 rules.
- Stormwater treatment for high use roads >5,000 vehicles per day, i.e., treatment of the water quality volume (10mm/hr rainfall) in accordance with the requirements of GD01.

Stormwater flood attenuation is not required considering there are no flood prone properties downstream of the site (Watercourse 5 and 6 discharge directly to the CMA).

The above requirements were confirmed by Mark Iszard (Healthy Waters) in the pre-application meeting with Council held on 20 September 2021.

With respect to the roads and JOALS it is proposed the above outcomes will be achieved through a series of 'at source' rain gardens. 'Point of discharge' communal devices servicing a consolidated catchment (such as wetlands) were also considered, however the site geometry and contours does not lend itself to this approach. Instead, multiple outlets to the downstream watercourses with smaller sub catchments is preferred.

The proposed road and JOALS do not meet the threshold of high use roads, however treatment of runoff from these areas will be provided via the rain gardens which will also achieve the retention and detention requirements. The section of McLarin Road fronting the site (eastern side only) will also be serviced by a rain garden.


The individual lots will be required to employ at-source stormwater mitigation to achieve the retention and detention requirements above. It is expected that such requirements will be covenanted on the lot titles, as such, stormwater management within the lots is not addressed further within this report.

3.2.3 Raingardens

As noted in Section 3.1.4, a total of ten rain gardens are proposed – five public (located in road reserve berms) and five private (located in JOAL berms). The rain gardens will provide the retention, detention, and treatment requirements outlined in Section 3.4, for the road reserve and JOAL catchment areas.

An indicative cross section for the public raingarden is shown on RILEY Dwg: 210359-363 and in Figure 4. A structural in-situ wall is envisaged for the road-side to withstand the surcharge load from vehicles and to maximise the storage volume, whilst a batter slope can be employed on the footpath side. Details will be confirmed at EPA stage.

A preliminary design has been undertaken to size the raingardens based on the above cross section and in accordance with GD01 guidelines. This assessment was undertaken to confirm that the design parameters can be achieved within the spaces allocated for the raingardens. A soil permeability rate of 0.123L/m²/min has been adopted for the design, based on the CKL SMP and previous site testing (refer Section 3.2.3 of the SMP).

The raingarden preliminary sizes are presented in Table 3, and supporting calculations are included in Appendix B. Only raingarden 1 does not quite achieve the minimum ponding and infiltration footprint requirements as setout in GD01 for SMAF 1. The size of Raingarden 1 is limited by the width of the berm and distance between the adjacent lot vehicle crossings. Given the proposed raingarden size would be only marginally non-compliant, we believe it is the best practicable option and suitable in this case. All other GD01 design criteria (in terms of volumes) are easily met by all the proposed raingardens (refer attached calculations). We note that despite SMAF 1 being referenced within the SMP, the property is not shown to have a SMAF area overlay in the Unitary Plan GeoMaps viewer.

Boffa will prepare a planting and soil media specification for the rain gardens based on the device footprint and runoff volume. This will be confirmed at EPA stage.

ID	Location (refer plan)	Impervious Catchment Area ⁽¹⁾ (m ²)	Length ⁽²⁾ (m)	Width ⁽²⁾ (m)	Depth (m)	Ponding Footprint Ratio ⁽²⁾	Infiltration Footprint Ratio ⁽³⁾	Compliance with SMAF 1 ⁽⁴⁾
1	Road Reserve Sag Point (north)	1090	17.59	2.96	1.55	4.8%	3.2%	No
2	Road Reserve Sag Point (south)	1135	20.11	2.96	1.55	5.2%	3.5%	Yes
3	Road Reserve (north)	405	14.00	1.96	1.55	6.8%	3.5%	Yes
4	Road Reserve (south)	415	14.00	1.96	1.55	6.6%	3.5%	Yes
5	JOAL 1 (north)	155	6.20	2.00	1.55	8.0%	3.6%	Yes

 Table 3: Raingardens Preliminary Design

ID	Location (refer plan)	Impervious Catchment Area ⁽¹⁾ (m ²)	Length ⁽²⁾ (m)	Width ⁽²⁾ (m)	Depth (m)	Ponding Footprint Ratio ⁽²⁾	Infiltration Footprint Ratio ⁽³⁾	Compliance with SMAF 1 ⁽⁴⁾
6	JOAL 1 (south)	155	6.20	2.00	1.55	8.0%	3.6%	Yes
7	JOAL 2	290	7.30	2.60	1.55	8.0%	3.6%	Yes
8	JOAL 3 (north)	430	7.00	3.60	1.55	5.9%	3.5%	Yes
9	JOAL 3 (south)	290	10.10	2.00	1.55	7.0%	3.5%	Yes
10	McLarin Road	540	16.05	2.12	1.55	6.3%	3.5%	

⁽¹⁾ Based on roading, kerb, and footpath areas from civil design

⁽²⁾ Ratio of ponding area (measured at top of media layer) to impervious catchment area

⁽³⁾ Ratio of infiltration area (measured at top of storage layer) to impervious catchment area

⁽⁴⁾ SMAF 1 ponding footprint ratio = Min 5%, infiltration footprint ratio = min 3.5%

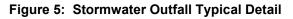
Refer RILEY Dwg: 210359-360 for the preliminary rain garden locations.

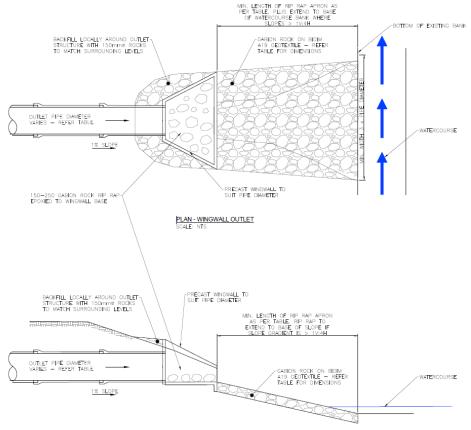
3.2.4 Stormwater Reticulation and Outfalls

Overflow form the stormwater management devices (e.g., raingardens) will be piped to one of seven new stream outfalls (discharging to Watercourse 5 and 6). The pipes will be designed to convey flows from the 10% AEP rainfall event including climate change (in accordance with Council SWCoP v3) for the full site catchment, plus a portion of the 127 McLarin Road property upstream and a portion of McLarin Road fronting the site.

The preliminary stormwater reticulation layout is shown on RILEY Dwg: 210359-360. The pipe sizes will be confirmed at EPA stage, however, preliminary sizing of the pipes beneath the proposed OLFP (which includes runoff from127 McLarin Road) has been completed and is shown in Table 4. Refer Appendix B for calculations.

Pipe Ref:	Catchment Area (Ha)	10yr-24hr rainfall depth* (mm)	Q ₁₀ (m ³ /s)	Pipe Slope	Pipe Size (mm)
1a	2.59	136	0.318	1%	525
1b	3.72	136	0.561	1%	600


Table 4: Example Stormwater Pipe Sizing:


*Rainfall depth inclusive of climate change

The proposed number and location of the stream outfalls has largely been dictated by the existing site terrain, proposed lot and JOAL configuration, desire to mimic the existing flow patterns and maintain baseflows to the watercourses. As a result, several outfalls along the Watercourse 5 and 6 alignments are proposed, rather than single large outfall at the downstream end of those watercourses – in order to maintain some flow to the upper reaches of the watercourses.

A preliminary design of the stormwater outfalls has been undertaken in accordance with TR2013-018. A traditional concrete wingwall with rock rip-rap energy dissipation is proposed as shown in Figure 5 and RILEY Dwg: 210359-362. This is consistent with outfalls approved and constructed in Stage 4 of the development, and the details provided in the CKL SMP. The outfall pipe size and flow velocities have been determined based on an assumed 1% pipe slope. Refer Appendix B for calculations.

The outfall details are presented in Table 5. Refer to RILEY Dwg: 210359-361 for the outfall locations and catchment areas.

ELEVATION - WINGWALL OUTLET

Table 5:	Preliminary	Stormwater	Outfall	Design
----------	-------------	------------	---------	--------

Outlet Ref:	Catchment Area (m²)	Pipe Dia. (mm)	Rip Rap Apron Length (m)	Gabion Rock Size Dn₅₀ (mm)	Rock Thickness (mm)
1	37,253	600	6.07	150	300
2	5,825	375	5.41	150	300
3	3,411	300	2.77	150	300
4	7,345	375	3.88	150	300
5	2,724	300	2.97	150	300
6	2,623	300	2.97	150	300
7	785	225	2.25	150	300

3.3 Wastewater

3.3.1 Existing Network and Capacity

The nearest public wastewater infrastructure is a pressure sewer network recently completed for Stage 4 which terminates with a 50mm and 90mm dia pipes on McLarin Road to the north-west of the site. From there wastewater flows to the gravity network on Hill Road where it then falls to the Glenbrook Beach pump station before being pumped to Clarks Beach Treatment facility.

Stage 5 will be developed immediately upon receipt of consent but depending on market demand. Watercare had previously agreed that KPDL can develop a further 100 lots beyond the Stage 1 and 2 based on an assumed wastewater demand per lot. 12 lots have been developed in Stage 3A and B, and 83 have been developed in Stage 4. However, wastewater metering of the Kahawai Point pressure network (meter located upstream of connection to gravity system on Hill Road) has returned a significantly lower actual wastewater demand (<120 L/person/day) than previously assumed (220 L/person/day). On this basis, there is sufficient capacity within the existing network to service the full Stage 5 development and most of the future Stage 6 development.

KPDL is working with Watercare on the design and consenting of the Southwestern Upgrade (SWU) which is anticipated at the end of 2024. The wastewater flow monitoring (Hill Road meter) will continue until such time that the SWU is completed.

3.3.2 Proposed Demand

The wastewater demand for Stage 5 subdivision based on Watercare's standard flow allowance of 180L/p/d and an assumed three-person average occupancy per property, is as follows (Noting that KPDL actual measurements conclude 2.5 persons per household and 120L/p/d)

	No.	L/property/day	ADWF (m ³ /day)
Residential Lots	48	540	25.92
Residential Superlot	1	1620 ⁽¹⁾	1.62
Superlot ⁽²⁾	1	540 ⁽²⁾	0.54
Commercial ⁽³⁾	2	1,667 ⁽³⁾	3.33
	·	Total	31.41

Table 6:	Desian	Wastewater	Volumes
	Design	mastemater	Volumes

(1) Assuming superlot lot is subdivided into 3 lots in the future

(2) Likely the superior will be developed with a single user/owner, assume wastewater demand equivalent to one residential lot.

(3) Assumed GFA of 200 sqm per commercial lot - assume majority is dry retail/office where toilets are provided to customers (WSL CoP Table 5.1.3 – 1 person per 15m² floor area and 65L/p/day), with say 75m2 wet retail per lot (15L/day/m²)

3.3.3 Proposed Network

Wastewater disposal from the site will be discharged via a new pressure sewer network, discharging to a recently completed pressure sewer network on McLarin Road. From there wastewater will flow to the gravity network on Hill Road where it will fall to the Glenbrook Beach pump station before being pumped to Clarks Beach Treatment facility.

The Stage 5 pressure sewer network has been designed by GHD and is shown on RILEY Dwg: 210359-364. Refer to the GHD pressure sewer network assessment report attached in Appendix A for further details. The Stage 5 development will be serviced by two DN50 mm pipes on either side of the road and discharge into a DN75 mm pipe within McLarin Road and ultimately connect to the existing DN90 mm pipe on McLarin Road. As part of the subdivision works, each Stage 5 lot will be provided with an individual boundary kit for future connections to the public network. Each lot/dwelling will be serviced by a private onsite pumpstation, which will be specified at building consent stage. The DN75 mm pipe will also be utilized for the future Stage development network (anticipated to be approx. 80 lots) to the east of the site.

3.4 Water Supply

3.4.1 Existing Network

The nearest public water infrastructure for Stage 5 is a 200mm main on McLarin Road located to the south of the site (located opposite No. 140 McLarin Road), and a recently constructed 50mm main which terminates outside Superlot 3 on McLarin Road.

3.4.2 Proposed Demand

The water demand for Stage 5 subdivision based on Watercare's standard flow allowance of 220L/p/d and an assumed 3-person average occupancy per property, is as follows:

	No.	L/property/day	Daily Water Demand (m ³ /day)
Residential Lots	48	660	31.68
Residential Superlot	1	1980 ⁽¹⁾	1.98
Superlot ⁽²⁾	1	660 ⁽²⁾	0.66
Commercial	2	1,667 ⁽³⁾	3.33
		Total	37.65

Table 6: Design Water Supply Volumes

(1) Assuming lot is subdivided into three lots in the future

(2) Likely the superlot will be developed with a single user/owner, assume wastewater demand equivalent to one residential lot.
 (3) Assumed GFA of 200 sqm per commercial lot - assume majority is dry retail/office where toilets are provided to customers (WSL CoP Table 6.1.b – 1 person per 15m² floor area and 65 L/p/day), with say 50m2 wet retail per lot (15 L/day/m²)

3.4.3 Proposed Network

The proposal is to utilise the existing 200mm McLarin Road water main and extend it to reticulate the water network throughout the subdivision. A connection will also be made back to the 50mm main on McLarin Road to create a looped watermain system. It is proposed to reticulate a pipe network consisting of a 150mmNB PE (Polyethylene) pipe and 63mmNB PE pipes, with each proposed lot to be serviced by individual water services connection and meters from the water mains.

A total of four new hydrants are proposed at regular spacings in accordance with New Zealand Fire Service standard: SNZ PAS 4509. We understand from assessments undertaken in previous stages that there is adequate water pressure within the public water supply system to meet firefighting standards.

The proposed watermain layout is shown on RILEY Dwg: 210359-365.

4.0 Conclusions

A 52 Lot subdivision comprising 48 residential lots, two commercial lots, and two super lots is proposed at 127 McLarin Road. The development will include construction of a new road and intersection with McLarin Road, and 3 x JOALS to access rear lots off the newly created road. The development is Stage 5 of the wider Kahawai Point development. The below is a summary of the civil engineering considerations.

4.1 Stormwater

- An existing overland flow path dissects the property running south-north through the property. The flow path will be filled in and re-routed through the site via an engineered grass swale designed to convey flows from the 1% AEP rainfall event.
- The site will be recontoured to facilitate the subdivision, however catchment areas to the two downstream watercourses will remain approximately the same as currently.
- A Stormwater Management Plan has been prepared by CKL for the wider Kahawai Point development. Stormwater mitigation measures are proposed for the roads in general accordance with the SMP, to achieve:
 - Retention of 5mm rainfall
 - \circ Detention of 24-hr 95th % rainfall event.
 - Stormwater treatment to TP10 requirements (now GD01)
- 'At source' rain garden devices are proposed to achieve the mitigation requirements for roads and JOALS as per above. Stormwater mitigation for the individual lots will be the responsibility of the individual lot owners.
- Stormwater from roads and lots will be conveyed through a public piped reticulation which will discharge to the downstream watercourse's via a number of specifically designed stormwater outfalls which will include energy dissipation measures.

4.2 Wastewater

- The existing public pressure sewer network (completed for Stage 4) will be extended along McLarin Road and into the site to service Stage 5 lots.
- GHD has completed a capacity assessment and design of the pressure sewer network extension. GHD's report is appended.
- GHD have concluded that there is sufficient capacity within the downstream network for all of Stage 5 lots plus approximately 80 lots to the east (part of future development stage/s). The proposed network extension is sized for the future stage/s to connect into.
- Individual connections (and boundary kits) will be created for each lot.

4.3 Water Supply

- The public watermain network will be extended along McLarin Road (from both directions) and into the site to service Stage 5 lots (and future stages beyond). By connecting the two existing networks on McLarin Road, a looped network will be created.
- A watermains will be extended along both sides of the new subdivision road and will deliver domestic supply to the new lots. Four proposed hydrants will satisfy the fire-fighting requirements for the subdivision.
- Individual connections (and meters) will be created for each lot.

5.0 Limitation

This report has been prepared solely for the benefit of Kahawai Point Development Ltd as our client with respect to the brief and Auckland Council in processing the consent. The reliance by other parties on the information or opinions contained in the report shall, without our prior review and agreement in writing, be at such parties' sole risk.

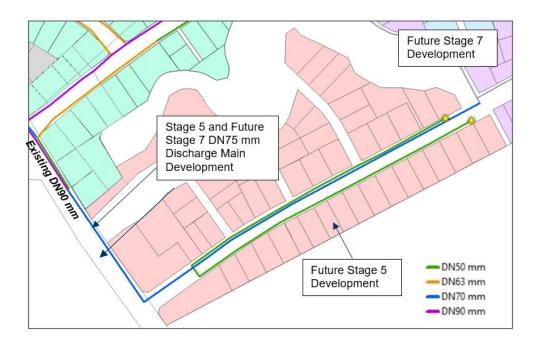
Opinions and judgements expressed herein are based on our understanding and interpretation of current regulatory standards and should not be construed as legal or planning opinions. Where opinions or judgements are to be relied on, they should be independently verified with appropriate advice.

APPENDIX A

GHD Low Pressure Sewer Report 27 Napier Street, GHD Centre Level 3 Freemans Bay, Auckland 1010 New Zealand www.ghd.com

Our ref: 12546340

03 February 2022


Bernie Chote Kahawai Point Developments Ltd PO BOX 301 Waiuku 2341

Pressure Sewer Network Assessment – Stage 5 Kahawai Point Development

Dear Bernie,

Further to your enquiries regarding the Stage 5 development at Kahawai Point, we have assessed the network design to assess the network's performance. The purpose of this assessment was to confirm that the proposed reticulation installed under Stage 5 achieved the design performance parameters as set out by Watercare (WSL) for Engineering Plan Approval.

The proposed Stage 5 development consists of 52 lots, comprising 48 standard residential lots, 1 residential superlot (we have assumed this lot may be subdivided in the future into as many as 3 residential lots), 2 commercial lots, and one further superlot (Superlot 3, with one owner). The Stage 5 development will be serviced by two DN50 mm pipes on either side of the road and discharge into a DN75 mm pipe within McLarin Road and ultimately connect to an existing DN90 mm pipe (Appendix A). The DN75 mm pipe will also be utilized for the future Stage 7 network (anticipated to be approx. 80 lots). This assessment is to evaluate that the proposed Stage 5 network and the common Stage 7 discharge main conforms to the WSL design specification.

1. Pressure Sewer Network Assessment

A dynamic model of the proposed Stage 5 pressure sewer network has been developed using Innovyze InfoWorks ICM (Version 7) dynamic hydraulic modelling software package.

As per the Watercare Code of Practice (Part 5 Wastewater), for pressure sewer design:

Section 5.3.12.3.3 – The design flows shall be calculated in accordance with section 5.3.5 and as revised below:

- a) Peak flows will be based on average daily flow (ADWF) with an added capacity safety factor of 1.2 per dwelling unit.
- b) Wet weather flows shall be excluded.

Therefore, the average daily flow per property has been identified as **540 L/property/day**, with a safety factor of 1.2 per dwelling.

However, it is common for actual network flows to be lower than the predicted 540 L/property/day. Metering of other similar residential areas suggests that an average wastewater flow per person is 140 L/person/day. It is therefore recommended to also assess a pressure sewer network performance under a lower flow scenario (**420 L/property/day**) to ensure the network can reach self-cleansing velocities and acceptable wastewater retention times.

The objective of the network assessment is to ensure that the proposed development's pressure sewer network and discharge main will:

- Achieve minimum self-cleansing velocities (above 0.9 m/s).
- Operate within acceptable pump heads (less than 40 m).
- Discharge wastewater from the network within an acceptable period (wastewater detention time) to avoid septicity and corrosion (less than 8 hours).
- Achieve sufficient air movement to avoid the need for air valves.

The network design will be assessed for the following flow scenarios:

Normal Flow Operating Scenario (648 L/property/day)

This scenario will be used as the basis for confirmation of the network's pipe sizes and pipe network layouts. The results from this scenario run are used for:

- Calculating system wastewater retention times.
- Reviewing pipe velocities and ability to achieve minimum velocities/durations.
- Reviewing maximum head at individual pump units.

Low Flow Operating Scenario (420 L/property/day)

A lower baseline loading to be applied for all residential connections. The results from this scenario run are used for:

• Confirming the robustness of the system for achieving minimum velocity conditions and sensitivity of the network's retention times.

2. Hydraulic Assessment for Stage 5

Self-Cleansing Velocities

Maximum velocities do not exceed 2 m/s, and the minimum self-cleansing velocity of 0.9 m/s is achieved (Appendix B) by most pipes. Minimum self-cleaning velocities for pipe sections at some pipe section extremities do not meet the required 0.9 m/s for the low flow scenario (Appendix C). The DN75 mm and DN 90 mm discharge main are also below the requirement at 0.8 and 0.7 m/s respectively. However, all pipes are above 0.6 m/s. The DN50 mm pipe sections are already at the minimum pipe diameter allowed (DN50 mm) and cannot be further reduced. Furthermore, previous research by Popovic (2015)¹ concluded that velocities of 0.6 m/s and higher were sufficient for self-cleansing of pressure sewer pipes. Although these velocities do not meet the Watercare CoP requirements, it is considered that self-cleaning will still be achieved. Once the Stage 7 development is connected the DN75 mm line velocity increases to 1.2 m/s.

Maximum Pump Heads

The total dynamic heads are well within the acceptable pump operation range:

Scenario	Maximum Pump Dynamic Head Range (m)
Stage 5 Development Only	22.2 to 34.5
Stage 5 Development (Stage 7 Connected)	33.2 to 44.2

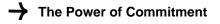
The expected maximum network pressure of 35 m for the lowest elevation pump within Stage 5 is lower than the maximum permitted pressure of 40 m. Once the Stage 7 development is included the Stage 5 maximum pump head increases to 44.2 m, however these maximum pump heads over 40 m are less than 5 mins per day.

Wastewater Retention

Wastewater age is calculated to analyse the network's risk to odour and septicity and whether any mitigation measures are required.

The wastewater age calculations consider both:

- Retention time in the collection tank before pumping, and
- Travel time in the pipework system.


The total average age of wastewater leaving the network is a sum of the wastewater time in the development reticulation network and within the collection tank:

Scenario	The total average age of wastewater leaving the network (hrs)	Time in Reticulation Network (hrs)	Time in Collection Tank (hrs)		
Design Stage 5	3.3	1.9	1.4		
Design Stage 5 (Low Flow)	5.1	2.9	2.2		

 Table 1
 Wastewater Age Assessment

According to the Pressure Sewer Code of Australia (**WSA 07-2007-1.1**), a wastewater age between 4 to 8 hours indicates a medium risk of septicity. A wastewater age of more than 8 hours indicates a high risk of septicity.

¹ Popovic, P. (2015). *Pressurized Sewage Systems and Self-Cleansing Process*. Oslo: Norwegian University of Life Sciences.

For the development, the maximum expected wastewater retention time in the collection tank and network are expected to be approximately 3 to 7 hrs. This is acceptable, according to the WSL standard of less than 8 hours.

Air Management

Within pressure sewer networks, combination air-release/vacuum break valves are required at significant high points to purge air daily from the network. Air valves may also be required on downward sloping pipes where a sufficient velocity and duration of flow is not achieved to move the air to the next air valve or the downstream upward sloping pipe section.

For the Stage 5 Development's discharge path to the DN75 mm network in McLarin Road, one downward sloping pipe section has been identified:

For a gas pocket to be successfully transported downstream to the next air valve or system outlet, there needs to be a continuous flow duration above the minimum velocity for a time long enough for the air pocket to move beyond any intermediate low points in the pipe. If a sufficient duration to move the gas along a downward sloping pipe gradient to either an air valve or an upward sloping pipe cannot be reliability achieved daily, then an air valve will be required.

The potential for gas collection is to be estimated for a system using the Walski et al equation:

Scenario	Length (m)	Diameter (mm)	V _{MINREQ} (m/s)	T _{MINREQ} (mins)	T _{ACHIEVED} at V _{MIN} (mins)	T _{ACHIEVED} at V _{MIN} (mins) Low Flow
Pipe Section	305	DN50 to DN75	0.35	2 to 8	11 to 16	9 to 12

The model results indicate that a long enough time is achieved for the transportation of gas pockets along the downward sloping section (even for the low flow scenario), and therefore an air valve is not required.

3. Pressure Sewer Network Layout

Air Valves

As discussed above, air valves are not required for the proposed development's pressure sewer network.

Flushing Points

Two flushing points will be located at the start of each DN50 mmpipe run, as shown in Appendix A.

Isolation Valves

Isolation valves are to be provided at branch line intersections, on each line upstream of the tee. These will enable each line to be isolated as required for maintenance or connection of additional boundary kits.

4. Conclusions

A hydraulic design of the Kahawai Point Stage 5 Development was completed. The assessment has shown that the Stage 5 design network:

- Some pipe sections do not achieve the minimum self-cleansing velocity of 0.9 m/s. However, all pipes are above 0.6 m/s. These pipe sections are already at the minimum pipe diameter allowed (DN50 mm) and cannot be further reduced. Although these velocities do not meet the Watercare CoP requirements, it is considered that self-cleaning will still be achieved.
- Operates within acceptable pump heads.
- Discharges wastewater from the network within an acceptable period of time (wastewater detention time) to avoid septicity and
- The proposed network layout does not require air valves.

For the Stage 5 and the future Stage 7 development, it is recommended that the proposed DN75 mm line (located within the Stage 5 development) be connected to the existing DN90 mm line currently within McLarin Road. It is noted that this line does not meet the minimum self-cleansing velocity requirement of 0.9 m/s when only the Stage 5 development is connected, the velocity increases to 1.2 m/s once Stage 7 is connected. However, velocities are above 0.6 m/s. Pumps within the future Stage 7 development are within acceptable pump heads (subject to the final design).

5. Recommendations

It is recommended that the Kahawai Point Stage 5 Development pressure sewer network be granted EPA approval.

Yours sincerely For and on behalf of GHD Ltd

Teresa Scott Senior Water Engineer

Robert White Technical Director

APPENDIX B

Stormwater Design Calculations AUCKLAND

4 Fred Thomas Drive, Takapuna, Auckland 0622 PO Box 100253, North Shore, Auckland 0745 Tel: +64 9 489 7872 Fax: +64 9 489 7873 CHRISTCHURCH 22 Moorhouse Avenue, Addington, Christchurch 8011 PO Box 4355, Christchurch 8140 Tel: +64 3 379 4402 Fax: +64 3 379 4403

STORMWATER DESIGN CALCULATIONS

Prepared for:

Kahawai Point Developments Ltd

Prepared by:

Morris Kleinjan, Intermediate Civil Engineer

Checked by:

Luke Gordon, Principal Engineer, CPEng

Reviewed and approved for issue by:

Steven James, Project Director, CPEng

.

Project reference:

210359-J

Date:

10 February 2022

AUCKLAND

4 Fred Thomas Drive, Takapuna, Auckland 0622 PO Box 100253, North Shore, Auckland 0745 Tel: +64 9 489 7872 Fax: +64 9 489 7873 CHRISTCHURCH 22 Moorhouse Avenue, Addington, Christchurch 8011 PO Box 4355, Christchurch 8140 Tel: +64 3 379 4402 Fax: +64 3 379 4403

STORMWATER DESIGN CALCULATIONS

Prepared for:

Kahawai Point Developments Ltd

Prepared by:

Aditya Raamkumar, Civil Engineer

Checked by:

Luke Gordon, Principal Engineer, CPEng

Reviewed and approved for issue by:

.....

Steven James, Project Director, CPEng

Project reference:

210359-J

Date:

10 February 2022

RILEY Ref:	210359
Project:	Kahawai Point
Stage:	5
Date:	2/02/2022
Design By:	Morris Kleinjan
Reviewed By:	LDG
Task:	Rain Garden Design - as per GD01
Background:	Kahawai Point is a subdivision located within Glenbrook, Auckland. Stage 5 is located south-east of Stage 4 and east of McLarin Road.
Requirements:	GD01: Stormwater Management Devices Guide
Summary:	

RG1	RG1 - Road 1 - Sag Point - Northside
RG2	RG1 - Road 1 - Sag Point - Southside
RG3	RG 3 - Road 1 - JOAL 3 - Northside
RG4	RG4 - Road 1 - JOAL 3 - Southside
RG5	RG5 - JOAL 1 - North
RG6	RG6 - JOAL 1 - South
RG7	RG7 - JOAL 2
RG8	RG8 - JOAL 3 - Nort (Irregular)
RG9	RG9 - JOAL 3 - South
RG10	RG10 - McLarin Road

Length	Width	Depth	Area
L	w	D	A
(m)	(m)	(m)	(m²)
17.59	2.96	1.55	51.98
20.11	2.96	1.55	59.43
14.00	1.96	1.55	27.37
14.00	1.96	1.55	27.37
6.20	2.00	1.55	12.40
6.20	2.00	1.55	12.40
7.30	2.60	1.55	18.98
7.00	3.60	1.55	25.20
10.10	2.00	1.55	20.20
16.00	2.22	1.55	35.52

RILEY Ref: Project: Stage: Date: Design By: Reviewed By: Task: Background: Requirements: Rain Garden Location/Name:	210359 Kahawai Point 5 2/02/2022 Morris Kleinjan LDG Rain Garden Desigr Kahawai Point is a s GD01: Stormwater RG1 - Road 1 - Sag I	subdivision locat Management De	evices Guid	Key ### Input Design Variable Input Design Requirement Output Design Variable Output Design Requirement Output Design Requirement Input Design Requirement Output Design Requirement Output Design Requirement Input Design Requirement Output Design Requirement Output Design Requirement Input Design Requirement Output Design Requirement Input Design Requirement
Parameters		Units		References
Catchment Areas Total Impervious Pervious 95th% 24hr Rainfall D	Pepth	1860 1090 770 32	m² m² m² mm	Based on Civil Design - refer to catchment drawing Based on Civil Design - includes roading, kerb, & footpath areas Calculated as per GD01, B1.7.1, Table 10 & Figure 6 for SMAF 1
Runoff Volumes Pre-development Post-developmer		15.9 26.2	m³ m³	Pre-development and post-development runoff volumes calculated as per GD01, Section B1 - Design Processes, § B1.7.1, Tables 10 & 11 for SMAF 1 (95th percentile rainfall event as per GD01, § B1.7.1, Figure 6) using TP108. TP108 hydrological calculations completed separately. Pre-development pervious areas - CN = 81 as per <i>Kahawai Point Special Housing Area Stormwater Management Plan</i> prepared by Stormwater Solutions Consulting Limited (CKL LTD) dated 7th July, 2016. Post-development pervious areas - CN = 74. Impervious areas CN = 98.
Ponding				
Required Footpri			-	GD01, Section C3 - Bioretention, § C3.2.3, Table 48 - SMAF 1
Required Footpri Design Footprint		54.50 51.98	m² m²	Calculated Calculated - see table below
Area Check	Aled	NO	-	However SMAF 2 target of >3.5% is achieved
Footprint Percent	tage Achieved	4.8%	-	Calculated
Storage Available Volume		5.43	m ³	Calculated
	:	5.45		Calculated
Infiltration				
Required Footpri	-		-	GD01, Section C3 - Bioretention, § C3.2.3, Table 48 - SMAF 1
Required Footpri		38.15	m²	Calculated
Design Footprint		34.46	m²	Calculated - see table below
Footprint Area Ch		NO	-	
Footprint Percent	-	3.2%	- L/ m²/min	
Minimum Infiltra	tion Rate >	2.00	mm/hr	GD01, Section C3 - Bioretention, § C3.2.3, Table 48 - SMAF 1
Available Infiltrat	ion Rate	0.123		Estimated permeability rate based on on-site testing as per Kahawai Point Special Housing Area Stormwater Management
K _{SUBSOIL}		7.38	mm/hr	Plan prepared by Stormwater Solutions Consulting Limited (CKL LTD) dated 7th July, 2016.
		0.007	m/hr	
Infiltration Rate 0	Check	OKAY	-	
Time Period		3	days	GD01, Section C3 - Bioretention, § C3.2.3, Equation 10
		72	hrs	GD01, Section C3 - Bioretention, § C3.2.3, Equation 10
Storage Volume		5.43	m ³	Calculated
Infiltration Volum		18.31	m³	Calculated - GD01, Section C3 - Bioretention, § C3.2.3, Equation 10
Infiltration Volum		OKAY	-	RILEY interpretation of GD01, Section C3, § C3.2.3, Equation 10 - Infil. vol. capacity must ≥ than storage vol.
	IC .	5.43	m³	RILEY interpretation of GD01, Section C3, § C3.2.3, Equation 10 - Infiltration vol. = storage volume.
Evapotranspiration				
Time Period		3	days	GD01, Section C3 - Bioretention, § C3.2.3, Equation 11
Rate		0.003	m/day m³	GD01, Section C3 - Bioretention, § C3.2.3, Equation 11 Calculated - GD01 Section C2 - Right Equation 5 C2.2.2, Equation 11
Volume		0.47		Calculated - GD01, Section C3 - Bioretention, § C3.2.3, Equation 11
Detention		1.05		
Required Volume Available Volume		4.85	m³ m³	Calculated = postdev vol - predev vol - retention volume Calculated from table below and GD01, Section C3 - Bioretention, § C3.2.3, Equation 8
Volume Check	-	20.88 OKAY	-	כמוכטומנים זו סווד נמטופ שפוטש מוום שטטב, ספרנוטוד כס - סוטרפנפוננוטח, 9 כא.ב.א, Equation 8
		ORAT		
Retention		-		CD01 Cashing D1 Davies Deserves (D1 7.1 Table 10 CMAE 1.0 C
Required Runoff	Depth	5	mm	GD01, Section B1 - Design Processes, § B1.7.1, Table 10 - SMAF 1 & 2
Poquired Volume		0.005	m m³	Calculated Calculated = 5mm x impervious area
Required Volume Available Volume		5.45 5.90	m²	Calculated = 5mm x impervious area Calculated - GD01, Section C3 - Bioretention, § C3.2.3, Equation 12
Volume Check	-	OKAY	-	
		2.3.		

Layer		Length		Wi	dth	Depth				Area	Void Space		Volume	
		LFRONT	L _{REAR}	W _{SIDE-1}	W _{SIDE-2}	D		D _{MIN}		D _{MAX}	Α			VAVAILABLE
		Design	Design	Design	Design	Design		Criteria		Criteria	Design	Design	Criteria	Design
		(m)	(m)	(m)	(m)	(m)		(mm)		(mm)	(m²)	-	-	(m³)
	Total					0.000	:	0		N/A		100%	100%	0.00
Freeboard	Тор	17.590	17.590	2.955	2.955						51.98			
	Slope (1:H)	VERT	VERT	VERT	VERT									
	Total					0.200		200		N/A		100%	100%	9.93
Ponding	Тор	17.590	17.590	2.955	2.955						51.98			
	Slope (1:H)	VERT	1	1	1									
	Total					0.500		500		N/A		30%	30%	6.27
Media	Тор	17.190	17.190	2.755	2.755						47.36			
	Slope (1:H)	VERT	1	1	1									
	Total					0.100	-	100		100		30%	30%	1.06
Transition	Тор	16.190	16.190	2.255	2.255						36.51			
	Slope (1:H)	VERT	1	1	1									
	Total					0.300		200		300		35%	35%	3.62
Drainage	Тор	15.990	15.990	2.155	2.155						34.46			
[Slope (1:H)	VERT	VERT	VERT	VERT									
	Total					0.450		450		N/A		35%	35%	5.43
Storage	Тор	15.990	15.990	2.155	2.155						34.46			
	Slope (1:H)	VERT	VERT	VERT	VERT									
Total						1.550								

RILEY Ref: Project: Stage: Date: Design By: Reviewed By: Task: Background: Requirements: Rain Garden	GD01: Stormwater	subdivision locat Management De	evices Guide	Key ### Input Design Variable Input Design Requirement Output Design Requirement Unput Design Requirement Henbrook, Auckland. Stage 5 is located south-east of Stage 4 and east of McLarin Road.
Location/Name: Parameters	RG1 - Road 1 - Sag I	Point - Southside Units		References
Catchment Areas		Onits		
Total Impervious Pervious 95th% 24hr Rainfall D	Depth	1850 1135 715 32	m² m² m²	Based on Civil Design - refer to catchment drawing Based on Civil Design - includes roading, kerb, & footpath areas Calculated as per GD01, B1.7.1, Table 10 & Figure 6 for SMAF 1
				······································
Runoff Volumes Pre-development Post-developmer		15.8 27.1	m³ m³	Pre-development and post-development runoff volumes calculated as per GD01, Section B1 - Design Processes, § B1.7.1, Tables 10 & 11 for SMAF 1 (95th percentile rainfall event as per GD01, § B1.7.1, Figure 6) using TP108. TP108 hydrological calculations completed separately. Pre-development pervious areas - CN = 81 as per <i>Kahawai Point Special Housing Area Stormwater Management Plan</i> prepared by Stormwater Solutions Consulting Limited (CKL LTD) dated 7th July, 2016.
Ponding				
Required Footpri	-	2 5.0% 56.75	- m²	GD01, Section C3 - Bioretention, § C3.2.3, Table 48 - SMAF 1 Calculated
Required Footpri Design Footprint		59.43	m²	Calculated Calculated - see table below
Area Check		OKAY	-	
Footprint Percent	tage Achieved	5.2%	-	Calculated
Storage				
Available Volume	2	6.28	m³	Calculated
Infiltration		3.5%		
Required Footpri Required Footpri		≥ <u>3.5%</u> 39.73	- m²	GD01, Section C3 - Bioretention, § C3.2.3, Table 48 - SMAF 1 Calculated
Design Footprint		39.89	m²	Calculated - see table below
Footprint Area Ch		OKAY	-	
Footprint Percent	-	3.5%	-	
Minimum Infiltra	tion Rate 2	2.00	L/ m²/min mm/hr	GD01, Section C3 - Bioretention, § C3.2.3, Table 48 - SMAF 1
Available Infiltrat	ion Rate	0.123		Estimated permeability rate based on on-site testing as per Kahawai Point Special Housing Area Stormwater Management
K _{SUBSOIL}		7.38	mm/hr	Plan prepared by Stormwater Solutions Consulting Limited (CKL LTD) dated 7th July, 2016.
Infiltration Rate 0	Chack	0.007 OKAY	m/hr -	
	LIECK	3	days	GD01, Section C3 - Bioretention, § C3.2.3, Equation 10
Time Period		72	hrs	GD01, Section C3 - Bioretention, § C3.2.3, Equation 10
Storage Volume	c	6.28	m³ m³	Calculated
Infiltration Volum Infiltration Volum		21.20 OKAY	- -	Calculated - GD01, Section C3 - Bioretention, § C3.2.3, Equation 10 RILEY interpretation of GD01, Section C3, § C3.2.3, Equation 10 - Infil. vol. capacity must ≥ than storage vol.
Infiltration Volum		6.28	m ³	RILEY interpretation of GD01, Section C3, § C3.2.3, Equation 10 - Infiltration vol. = storage volume.
Evapotranspiration				
Time Period		3	days	GD01, Section C3 - Bioretention, § C3.2.3, Equation 11
Rate		0.003	m/day	GD01, Section C3 - Bioretention, § C3.2.3, Equation 11
Volume		0.53	m³	Calculated - GD01, Section C3 - Bioretention, § C3.2.3, Equation 11
Detention Required Volume	3	5.63	m³	Calculated = postdev vol - predev vol - retention volume
Available Volume		24.01	m ³	Calculated from table below and GD01, Section C3 - Bioretention, § C3.2.3, Equation 8
Volume Check		OKAY	-	
Retention				
Required Runoff	Depth	5 0.005	mm m	GD01, Section B1 - Design Processes, § B1.7.1, Table 10 - SMAF 1 & 2 Calculated
Required Volume		5.68	m ³	Calculated = 5mm x impervious area
Available Volume	2	6.82	m³	Calculated - GD01, Section C3 - Bioretention, § C3.2.3, Equation 12
Volume Check		OKAY	-	

Layer	Length		Wi	Width Depth					Area		Void Space			
		LFRONT	L _{REAR}	W _{SIDE-1}	W _{SIDE-2}	D		D _{MIN}		D _{MAX}	Α			VAVAILABLE
		Design	Design	Design	Design	Design		Criteria		Criteria	Design	Design	Criteria	Design
		(m)	(m)	(m)	(m)	(m)		(mm)		(mm)	(m²)	-	-	(m³)
	Total					0.000		0		N/A		100%	100%	0.00
Freeboard	Тор	20.110	20.110	2.955	2.955						59.43			
	Slope (1:H)	VERT	VERT	VERT	VERT									
	Total					0.200		200		N/A		100%	100%	11.37
Ponding	Тор	20.110	20.110	2.955	2.955						59.43			
	Slope (1:H)	VERT	1	1	1									
	Total					0.500		500		N/A		30%	30%	7.22
Media	Тор	19.710	19.710	2.755	2.755						54.30			
	Slope (1:H)	VERT	1	1	1									
	Total					0.100		100		100		30%	30%	1.23
Transition	Тор	18.710	18.710	2.255	2.255						42.19			
	Slope (1:H)	VERT	1	1	1									
	Total					0.300		200		300		35%	35%	4.19
Drainage	Тор	18.510	18.510	2.155	2.155						39.89			
	Slope (1:H)	VERT	VERT	VERT	VERT									
	Total					0.450		450		N/A		35%	35%	6.28
Storage	Тор	18.510	18.510	2.155	2.155						39.89			
-	Slope (1:H)	VERT	VERT	VERT	VERT									
Total						1.550								

RILEY Ref: Project: Stage: Date: Design By: Reviewed By: Task: Background: Recquirements: Rain Garden Location/Name:	210359 Kahawai Point 5 2/02/2022 Morris Kleinjan LDG Rain Garden Desigu Kahawai Point is a GD01: Stormwater RG 3 - Road 1 - JOA	subdivision locat Management D		Key ## ## ## ## ## ## Cuput Design Requirement Output Design Requirement Unput Design Requirement Inserved Inserved Inserved Inserved Inserved Inserved Inserved Output Design Requirement Inserved Inserved
-	KG 5 - KOAU I - JOA			References
Parameters		Units		Relefences
Catchment Areas Total Impervious Pervious 95th% 24hr Rainfall I	Depth	655 405 250 32	m² m² m²	Based on Civil Design - refer to catchment drawing Based on Civil Design - includes roading, kerb, & footpath areas Calculated as per GD01, B1.7.1, Table 10 & Figure 6 for SMAF 1
Bunoff Volumos				
Runoff Volumes Pre-developmen Post-developmen		5.6 9.7	m³ m³	Pre-development and post-development runoff volumes calculated as per GD01, Section B1 - Design Processes, § B1.7.1, Tables 10 & 11 for SMAF 1 (95th percentile rainfall event as per GD01, § B1.7.1, Figure 6) using TP108. TP108 hydrological calculations completed separately. Pre-development pervious areas - CN = 81 as per Kahawai Point Special Housing Area Stormwater Management Plan prepared by Stormwater Solutions Consulting Limited (CKL LTD) dated 7th July, 2016.
Ponding				
Required Footpri	*	≥ 5.0%	- m²	GD01, Section C3 - Bioretention, § C3.2.3, Table 48 - SMAF 1
Required Footpri Design Footprint		20.25 27.37	m²	Calculated Calculated - see table below
Area Check		OKAY	-	
Footprint Percen	tage Achieved	6.8%	-	Calculated
Storage				
Available Volume	e	2.26	m³	Calculated
Infiltration				
Required Footpri Required Footpri	-	≥ <u>3.5%</u> 14.18	- m²	GD01, Section C3 - Bioretention, § C3.2.3, Table 48 - SMAF 1 Calculated
Design Footprint		14.32	m²	Calculated - see table below
Footprint Area C		OKAY	-	
Footprint Percen	tage Achieved	3.5%	-	
Minimum Infiltra	ation Rate	> 0.033 2.00	L/ m²/min mm/hr	GD01, Section C3 - Bioretention, § C3.2.3, Table 48 - SMAF 1
Available Infiltrat	tion Rate	0.123		Estimated permeability rate based on on-site testing as per Kahawai Point Special Housing Area Stormwater Management
K _{SUBSOIL}		7.38	mm/hr	Plan prepared by Stormwater Solutions Consulting Limited (CKL LTD) dated 7th July, 2016.
Infilmation Date (0.007	m/hr	
Infiltration Rate (CHECK	OKAY 3	- days	GD01, Section C3 - Bioretention, § C3.2.3, Equation 10
Time Period		72	hrs	GD01, Section C3 - Bioretention, § C3.2.3, Equation 10
Storage Volume		2.26	m³	Calculated
Infiltration Volun Infiltration Volun		7.61 OKAY	m ³	Calculated - GD01, Section C3 - Bioretention, § C3.2.3, Equation 10 RILEY interpretation of GD01, Section C3, § C3.2.3, Equation 10 - Infil. vol. capacity must ≥ than storage vol.
Infiltration Volum		2.26	m ³	RILEY interpretation of GD01, Section C3, § C3.2.3, Equation 10 - Infiltration vol. = storage volume.
Evapotranspiration				
Time Period		3	days	GD01, Section C3 - Bioretention, § C3.2.3, Equation 11
Rate		0.003	m/day	GD01, Section C3 - Bioretention, § C3.2.3, Equation 11
Volume		0.25	m³	Calculated - GD01, Section C3 - Bioretention, § C3.2.3, Equation 11
Detention Required Volume	P	2.08	m ³	Calculated = postdev vol - predev vol - retention volume
Available Volume		10.03	m ³	Calculated from table below and GD01, Section C3 - Bioretention, § C3.2.3, Equation 8
Volume Check		OKAY	-	
Retention				
Required Runoff	Depth	5	mm	GD01, Section B1 - Design Processes, § B1.7.1, Table 10 - SMAF 1 & 2
Required Volume		0.005	m m³	Calculated Calculated = 5mm x impervious area
Available Volume		2.03	m ³	Calculated = Smith X Impervious area Calculated - GD01, Section C3 - Bioretention, § C3.2.3, Equation 12
Volume Check		OKAY	-	

Layer	Length		Wi	Width Depth				Area		Void	Volume			
		LFRONT	LREAR	W _{SIDE-1}	W _{SIDE-2}	D		D _{MIN}		D _{MAX}	Α			VAVAILABLE
		Design	Design	Design	Design	Design		Criteria		Criteria	Design	Design	Criteria	Design
		(m)	(m)	(m)	(m)	(m)		(mm)		(mm)	(m²)	-	-	(m³)
	Total					0.000	:	0		N/A		100%	100%	0.00
Freeboard	Тор	14.000	14.000	1.955	1.955						27.37			
	Slope (1:H)	VERT	VERT	VERT	VERT									
	Total					0.200	:	200		N/A		100%	100%	5.12
Ponding	Тор	14.000	14.000	1.955	1.955						27.37			
	Slope (1:H)	VERT	1	1	1									
	Total					0.500	:	500		N/A		30%	30%	2.96
Media	Тор	13.600	13.600	1.755	1.755						23.87			
	Slope (1:H)	VERT	1	1	1									
	Total					0.100	:	100		100		30%	30%	0.45
Transition	Тор	12.600	12.600	1.255	1.255						15.81			
	Slope (1:H)	VERT	1	1	1									
	Total					0.300	:	200		300		35%	35%	1.50
Drainage	Тор	12.400	12.400	1.155	1.155						14.32			
	Slope (1:H)	VERT	VERT	VERT	VERT									
	Total					0.450	:	450		N/A		35%	35%	2.26
Storage	Тор	12.400	12.400	1.155	1.155						14.32			
	Slope (1:H)	VERT	VERT	VERT	VERT									
Total						1.550								

RILEY Ref: Project: Stage: Date: Design By: Reviewed By: Task: Background: Requirements: Rain Garden Location/Name:	210359 Kahawai Point 5 2/02/2022 Morris Kleinjan LDG Rain Garden Desig Kahawai Point is a GD01: Stormwater RG4 - Road 1 - JOA	subdivision locat Management D		Image: Second State Sta
Parameters		Units		References
Catchment Areas Total Impervious Pervious 95th% 24hr Rainfall D	Depth	655 415 240 32	m² m² m²	Based on Civil Design - refer to catchment drawing Based on Civil Design - includes roading, kerb, & footpath areas Calculated as per GD01, B1.7.1, Table 10 & Figure 6 for SMAF 1
Runoff Volumes Pre-developmen Post-developmer		5.6 9.9	m³ m³	Pre-development and post-development runoff volumes calculated as per GD01, Section B1 - Design Processes, § B1.7.1, Tables 10 & 11 for SMAF 1 (95th percentile rainfall event as per GD01, § B1.7.1, Figure 6) using TP108. TP108 hydrological calculations completed separately. Pre-development pervious areas - CN = 81 as per <i>Kahawai Point Special Housing Area Stormwater Management Plan</i> prepared by Stormwater Solutions Consulting Limited (CK LTD) dated 7th July, 2016.
Ponding				
Required Footpri	nt Percentage	≥ 5.0%	-	GD01, Section C3 - Bioretention, § C3.2.3, Table 48 - SMAF 1
Required Footpri		20.75	m²	Calculated
Design Footprint	Area	27.37	m²	Calculated - see table below
Area Check	•	OKAY 6.6%	-	Calculated
Footprint Percen	tage Achieved	0.0%	-	Calculated
Storage		2.26	m ³	
Available Volume	2	2.26	m-	Calculated
Infiltration				
Required Footpri	-	≥ 3.5%	-	GD01, Section C3 - Bioretention, § C3.2.3, Table 48 - SMAF 1
Required Footpri		14.53 14.32	m² m²	Calculated Calculated - see table below
Design Footprint Footprint Area Cl		OKAY	- m-	Calculated - see table below
Footprint Percen		3.5%		
	-	0.033	L/ m²/min	
Minimum Infiltra	tion Rate	2.00	mm/hr	GD01, Section C3 - Bioretention, § C3.2.3, Table 48 - SMAF 1
Available Infiltrat	tion Rate	0.123	L/ m²/min	Estimated permeability rate based on on-site testing as per Kahawai Point Special Housing Area Stormwater Management
K _{SUBSOIL}		7.38	mm/hr	Plan prepared by Stormwater Solutions Consulting Limited (CKL LTD) dated 7th July, 2016.
		0.007	m/hr	
Infiltration Rate 0	Check	OKAY	-	CD01 Cartier C2 Disartestics (C2.2.2 Examples 10
Time Period		3 72	days hrs	GD01, Section C3 - Bioretention, § C3.2.3, Equation 10 GD01, Section C3 - Bioretention, § C3.2.3, Equation 10
Storage Volume		2.26	m ³	Calculated
Infiltration Volun	ne Capacity	7.61	m ³	Calculated - GD01, Section C3 - Bioretention, § C3.2.3, Equation 10
Infiltration Volun		OKAY	-	RILEY interpretation of GD01, Section C3, § C3.2.3, Equation 10 - Infil. vol. capacity must ≥ than storage vol.
Infiltration Volun	ne	2.26	m ³	RILEY interpretation of GD01, Section C3, § C3.2.3, Equation 10 - Infiltration vol. = storage volume.
Evapotranspiration				
Time Period		3	days	GD01, Section C3 - Bioretention, § C3.2.3, Equation 11
Rate		0.003	m/day	GD01, Section C3 - Bioretention, § C3.2.3, Equation 11
Volume		0.25	m³	Calculated - GD01, Section C3 - Bioretention, § C3.2.3, Equation 11
Detention				
Required Volume		2.23	m ³	Calculated = postdev vol - predev vol - retention volume
Available Volume	2	10.03	m ³	Calculated from table below and GD01, Section C3 - Bioretention, § C3.2.3, Equation 8
Volume Check		OKAY	-	
Retention				
Required Runoff	Depth	5	mm	GD01, Section B1 - Design Processes, § B1.7.1, Table 10 - SMAF 1 & 2
		0.005	m	Calculated
Required Volume		2.08	m ³	Calculated = 5mm x impervious area
Available Volume Volume Check	Ę	2.50 OKAY	m³ -	Calculated - GD01, Section C3 - Bioretention, § C3.2.3, Equation 12
volume check		ORAT		

Layer		Ler	Length		Width		Depth					Space	Volume
		LFRONT	L _{REAR}	W _{SIDE-1}	W _{SIDE-2}	D		D _{MIN}	D _{MAX}	Α			VAVAILABLE
		Design	Design	Design	Design	Design	0	Criteria	Criteria	Design	Design	Criteria	Design
		(m)	(m)	(m)	(m)	(m)		(mm)	(mm)	(m²)	-	-	(m³)
	Total					0.000	:	0	N/A		100%	100%	0.00
Freeboard	Тор	14.000	14.000	1.955	1.955					27.37			
	Slope (1:H)	VERT	VERT	VERT	VERT								
	Total					0.200		200	N/A		100%	100%	5.12
Ponding	Тор	14.000	14.000	1.955	1.955					27.37			
	Slope (1:H)	VERT	1	1	1								
	Total					0.500	:	500	N/A		30%	30%	2.96
Media	Тор	13.600	13.600	1.755	1.755					23.87			
	Slope (1:H)	VERT	1	1	1								
	Total					0.100	:	100	100		30%	30%	0.45
Transition	Тор	12.600	12.600	1.255	1.255					15.81			
	Slope (1:H)	VERT	1	1	1								
	Total					0.300	:	200	300		35%	35%	1.50
Drainage	Тор	12.400	12.400	1.155	1.155					14.32			
	Slope (1:H)	VERT	VERT	VERT	VERT								
	Total					0.450	:	450	N/A		35%	35%	2.26
Storage	Тор	12.400	12.400	1.155	1.155					14.32			
	Slope (1:H)	VERT	VERT	VERT	VERT								
Total			-			1.550							_

RILEY Ref: Project: Stage: Date: Design By: Reviewed By: Task:	210359 Kahawai Point 5 2/02/2022 Morris Kleinjan LDG Rain Garden Desigy	n - as per GD01			Key ## ## ##	Input Design Variable Input Design Requirement Output Design Variable Output Design Requirement			LEY JILTANTS
	-		tod within C	lanhradi Audiland Ct	nan E in lanata	d couth past of Stago 4 and a	act of Mola	rin Dood	
Background:					age 5 is locate	d south-east of Stage 4 and e	ast of NicLa	rin Koad.	
Requirements:	GD01: Stormwater	Management D	evices Guid	e					
Rain Garden									
Location/Name:	RG5 - JOAL 1 - Nort	th							
Parameters		Units		References					
Catchment Areas									
Total		260	m²	Based on Civil Design - re		-			
Impervious		155	m² m²	Based on Civil Design - in	cludes roading,	kerb, & footpath areas			
Pervious		105	m-	Calculated					
95th% 24hr Rainfall	Depth	32	mm	as per GD01, B1.7.1, Tab	le 10 & Figure 6	for SMAF 1			
Runoff Volumes									
Pre-developmer	nt	2.2	m ³	Pre-development and po	st-developmen	t runoff volumes calculated as p	er GD01, Sec	tion B1 - Design Proce	sses, § B1.7.1,
Post-developme		3.7	m³	TP108 hydrological calcu Pre-development pervice prepared by Stormwater	lations complet us areas - CN = Solutions Cons	title rainfall event as per GD01, § ted separately. 81 as per <i>Kahawai Point Special I</i> ulting Limited (CKL LTD) dated 7	- Housing Area	Stormwater Manager	nent Plan
Ponding									
Required Footpr	-	≥ 5.0%	-	GD01, Section C3 - Biore	tention, § C3.2.	3, Table 48 - SMAF 1			
Required Footpr		7.75	m² m²	Calculated Calculated - see table be					
Design Footprin Area Check	t Area	OKAY	-	Calculated - see table be	low				
Footprint Percer	ntage Achieved	8.0%	-	Calculated					
Storage									
Available Volum	ie	0.87	m ³	Calculated					
Infiltration									
Required Footpr	rint Percentage	≥ 3.5%	-	GD01, Section C3 - Biore	tention, § C3.2.	3, Table 48 - SMAF 1			
Required Footpr	rint Area	5.43	m²	Calculated					
Design Footprin		5.52	m²	Calculated - see table be	ow				
Footprint Area C		OKAY	-						
Footprint Percer	-	3.6%	- L/ m²/min						
Minimum Infiltra	ation Rate	> 2.00	mm/hr	GD01, Section C3 - Biore	ention. § C3.2.	3. Table 48 - SMAF 1			
Available Infiltra	ition Rate	0.123				n-site testing as per Kahawai Poi	nt Special Ho	using Area Stormwate	r Management
K _{SUBSOIL}		7.38	mm/hr			Consulting Limited (CKL LTD) da			
		0.007	m/hr						
Infiltration Rate	Check	OKAY	-						
Time Period		3	days hrs	GD01, Section C3 - Biore GD01, Section C3 - Biore					
Storage Volume		0.87	m ³	GD01, Section C3 - Biore Calculated	ention, 9 C3.2.	s, Equation to			
Infiltration Volu		2.93	m ³		on C3 - Bioreten	tion, § C3.2.3, Equation 10			
Infiltration Volu		OKAY	-			8, § C3.2.3, Equation 10 - Infil. vo	l. capacity m	ust≥than storage vol.	
Infiltration Volu	me	0.87	m ³	RILEY interpretation of G	D01, Section Ca	8, § C3.2.3, Equation 10 - Infiltrat	ion vol. = sto	rage volume.	
Evapotranspiration									
Time Period		3	days	GD01, Section C3 - Biore	tention, § C3.2.	3, Equation 11			
Rate		0.003	m/day	GD01, Section C3 - Biore					
Volume		0.11	m³	Calculated - GD01, Section	on C3 - Bioreten	tion, § C3.2.3, Equation 11			
Detention									
Required Volum Available Volum		0.73 4.27	m³ m³	Calculated = postdev vol		etention volume Section C3 - Bioretention, § C3.2	3 Equation	8	
Volume Check		0KAY	-	calculated if Unit table De	iow and GDU1,	Section C3 - Bioretention, 9 C3.2	, Lyuation	0	
Retention		27011							
	Death	5	mm	GD01, Section B1 - Desig	n Processes, § E	81.7.1, Table 10 - SMAF 1 & 2			
Required Runof	r Depth	0.005	m	Calculated		,			
Required Volum	e	0.78	m³	Calculated = 5mm x impe					
Available Volum	e	0.98	m³	Calculated - GD01, Section	on C3 - Bioreten	tion, § C3.2.3, Equation 12			
Volume Check		OKAY	-						
Rain Garden Geon	netry Design			1			· · · · · · · · · · · · · · · · · · ·		
Laver		Len	7th	Width		Depth	Area	Void Space	Volume

Layer		Length			dth		Dep	th		Area Vo		Space	Volume
		LFRONT	L _{REAR}	W _{SIDE-1}	W _{SIDE-2}	D	D _M	IN	D _{MAX}	Α			VAVAILABLE
		Design	Design	Design	Design	Design	Crite	ria	Criteria	Design	Design	Criteria	Design
		(m)	(m)	(m)	(m)	(m)	(mr	n)	(mm)	(m²)	-	-	(m³)
	Total					0.000		0	N/A		100%	100%	0.00
Freeboard	Тор	6.200	6.200	2.000	2.000					12.40			
	Slope (1:H)	VERT	VERT	VERT	VERT								
	Total					0.200	: 20	0	N/A		100%	100%	2.28
Ponding	Тор	6.200	6.200	2.000	2.000					12.40			
	Slope (1:H)	VERT	1	1	1								
	Total					0.500	: 50	0	N/A		30%	30%	1.23
Media	Тор	5.800	5.800	1.800	1.800					10.44			
	Slope (1:H)	VERT	1	1	1								
	Total					0.100	10	0	100		30%	30%	0.18
Transition	Тор	4.800	4.800	1.300	1.300					6.24			
	Slope (1:H)	VERT	1	1	1								
	Total					0.300	20	0	300		35%	35%	0.58
Drainage	Тор	4.600	4.600	1.200	1.200					5.52			
	Slope (1:H)	VERT	VERT	VERT	VERT								
	Total					0.450	: 45	0	N/A		35%	35%	0.87
Storage	Тор	4.600	4.600	1.200	1.200					5.52			
	Slope (1:H)	VERT	VERT	VERT	VERT								
Total		_		-	_	1.550							

RILEY Ref:	210359		
Project:	Kahawai Point		
Stage:	5		## Input Design Variable
Date:	2/02/2022		## Input Design Requirement
Design By:	Morris Kleinjan		## Output Design Variable
Reviewed By:	LDG Bain Cardan Dasir	an as not CD01	## Output Design Requirement
Task:	Rain Garden Desig		
Background:			in Glenbrook, Auckland. Stage 5 is located south-east of Stage 4 and east of McLarin Road.
Requirements:	GD01: Stormwate	r Management Devices	builde
Rain Garden Location/Name:	RG6 - JOAL 1 - Sou	ıth	
Parameters		Units	References
Catchment Areas			
Total		225 m ²	Based on Civil Design - refer to catchment drawing
Impervious		155 m ²	Based on Civil Design - includes roading, kerb, & footpath areas
Pervious		70 m ²	Calculated
95th% 24hr Rainfall	Depth	32 mm	as per GD01, B1.7.1, Table 10 & Figure 6 for SMAF 1
Runoff Volumes			
Pre-developmen	nt	1.9 m ³	Pre-development and post-development runoff volumes calculated as per GD01, Section B1 - Design Processes, § B1.7.1,
Post-developme	ent	3.7 m ³	Tables 10 & 11 for SMAF 1 (95th percentile rainfall event as per GD01, § B1.7.1, Figure 6) using TP108.
			TP108 hydrological calculations completed separately. Pre-development pervious areas - CN = 81 as per <i>Kahawai Point Special Housing Area Stormwater Management Plan</i>
			prepared by Stormwater Solutions Consulting Limited (CKL LTD) dated 7th July, 2016.
			Bart development norvieus areas - CN = 74 Immenvieus areas - CN = 00
Ponding Bogwirod Footor	int Dorcont	≥ 5.0% -	CD01 Section C2 Discretention & C2.2.2 Table 49 SMAE 4
Required Footpr Required Footpr		≥ <u>5.0%</u> - 7.75 m ²	GD01, Section C3 - Bioretention, § C3.2.3, Table 48 - SMAF 1 Calculated
Design Footprint		12.40 m ²	Calculated - see table below
Area Check		OKAY -	
Footprint Percer	ntage Achieved	8.0% -	Calculated
Storage			
Available Volum	e	0.87 m ³	Calculated
Infiltration			
Required Footpr	rint Percentage	≥ 3.5% -	GD01, Section C3 - Bioretention, § C3.2.3, Table 48 - SMAF 1
Required Footpr	rint Area	5.43 m ²	Calculated
Design Footprint		5.52 m ²	Calculated - see table below
Footprint Area C		OKAY -	
Footprint Percer	-	3.6% - 0.033 L/ m ²	/min
Minimum Infiltra	ation Rate	> 2.00 mm/	
Available Infiltra	tion Rate		min Estimated permeability rate based on on-site testing as per Kahawai Point Special Housing Area Stormwater Management
K _{SUBSOIL}		7.38 mm/	r Plan prepared by Stormwater Solutions Consulting Limited (CKL LTD) dated 7th July, 2016.
		0.007 m/hr	
Infiltration Rate	Check	OKAY -	
Time Period		3 days	GD01, Section C3 - Bioretention, § C3.2.3, Equation 10
Storago Volumo		72 hrs 0.87 m ³	GD01, Section C3 - Bioretention, § C3.2.3, Equation 10 Calculated
Storage Volume Infiltration Volu		2.93 m ³	Calculated - GD01, Section C3 - Bioretention, § C3.2.3, Equation 10
Infiltration Volu		OKAY -	RILEY interpretation of GD01, Section C3, § C3.2.3, Equation 10 - Infil. vol. capacity must \geq than storage vol.
Infiltration Volu		0.87 m ³	RILEY interpretation of GD01, Section C3, § C3.2.3, Equation 10 - Infiltration vol. = storage volume.
Evapotranspiration			
Time Period		3 days	GD01, Section C3 - Bioretention, § C3.2.3, Equation 11
Rate		0.003 m/da	GD01, Section C3 - Bioretention, § C3.2.3, Equation 11
Volume		0.11 m ³	Calculated - GD01, Section C3 - Bioretention, § C3.2.3, Equation 11
Detention			
Required Volum		1.03 m ³	Calculated = postdev vol - predev vol - retention volume
Available Volum	e	4.27 m ³	Calculated from table below and GD01, Section C3 - Bioretention, § C3.2.3, Equation 8
Volume Check		OKAY -	
Retention			
Required Runoff	f Depth	5 mm 0.005 m	GD01, Section B1 - Design Processes, § B1.7.1, Table 10 - SMAF 1 & 2 Calculated
Required Volum	P	0.005 m 0.78 m ³	Calculated Calculated = 5mm x impervious area
Available Volum		0.98 m ³	Calculated - GD01, Section C3 - Bioretention, § C3.2.3, Equation 12
Volume Check		OKAY -	
Rain Garden Geon	netry Design		
Laver		Longth	Width Denth Area Void Space Volume

Layer		Length			Width Depth						Area		Void Space	
		LFRONT	L _{REAR}	W _{SIDE-1}	W _{SIDE-2}	D		D _{MIN}		D _{MAX}	Α			VAVAILABLE
		Design	Design	Design	Design	Design		Criteria		Criteria	Design	Design	Criteria	Design
		(m)	(m)	(m)	(m)	(m)		(mm)		(mm)	(m²)	-	-	(m ³)
	Total					0.000	:	0		N/A		100%	100%	0.00
Freeboard	Тор	6.200	6.200	2.000	2.000						12.40			
[Slope (1:H)	VERT	VERT	VERT	VERT									
	Total					0.200	:	200	5	N/A		100%	100%	2.28
Ponding	Тор	6.200	6.200	2.000	2.000						12.40			
[Slope (1:H)	VERT	1	1	1									
	Total					0.500	:	500		N/A		30%	30%	1.23
Media	Тор	5.800	5.800	1.800	1.800						10.44			
	Slope (1:H)	VERT	1	1	1									
	Total					0.100	:	100		100		30%	30%	0.18
Transition	Тор	4.800	4.800	1.300	1.300						6.24			
	Slope (1:H)	VERT	1	1	1									
	Total					0.300	:	200		300		35%	35%	0.58
Drainage	Тор	4.600	4.600	1.200	1.200						5.52			
	Slope (1:H)	VERT	VERT	VERT	VERT									
	Total					0.450		450		N/A		35%	35%	0.87
Storage	Тор	4.600	4.600	1.200	1.200						5.52			
	Slope (1:H)	VERT	VERT	VERT	VERT									
Total						1.550								

RILEY Ref: Project: Stage: Date: Design By: Reviewed By:	210359 Kahawai Point 5 2/02/2022 Morris Kleinjan LDG			Key
Task:	Rain Garden Desig	n - as per GD01		
Background:	Kahawai Point is a	subdivision located	within G	Glenbrook, Auckland. Stage 5 is located south-east of Stage 4 and east of McLarin Road.
Requirements:		r Management Devi		
-	GD01. Stormwater	i wanagement bevi	CC3 Guid	
Rain Garden Location/Name:	RG7 - JOAL 2			
-	NG7 - JOAL 2			- /
Parameters		Units		References
Catchment Areas		115	2	
Total Impervious			m² m²	Based on Civil Design - refer to catchment drawing Based on Civil Design - includes roading, kerb, & footpath areas
Pervious			m²	Calculated
95th% 24hr Rainfall	Depth	32 mn	n	as per GD01, B1.7.1, Table 10 & Figure 6 for SMAF 1
Runoff Volumes				
Pre-developmer	nt	3.8 r	m³	Pre-development and post-development runoff volumes calculated as per GD01, Section B1 - Design Processes, § B1.7.1,
Post-developme			m³	Tables 10 & 11 for SMAF 1 (95th percentile rainfall event as per GD01, § B1.7.1, Figure 6) using TP108.
				TP108 hydrological calculations completed separately. Pre-development pervious areas - CN = 81 as per Kahawai Point Special Housing Area Stormwater Management Plan prepared by Stormwater Solutions Consulting Limited (CKL LTD) dated 7th July, 2016. Post development pervious parts - CN = 74 June Provider Parts - CN = 29
Ponding				
Required Footpr	-	≥ 5.0% -		GD01, Section C3 - Bioretention, § C3.2.3, Table 48 - SMAF 1
Required Footpr			m² m²	Calculated
Design Footprin Area Check	LAIEd	OKAY -		Calculated - see table below
Footprint Percer	ntage Achieved	6.5% -		Calculated
Storage				
Available Volum	ie.	1.62 r	m³	Calculated
Infiltration		1.02		
Required Footpr	rint Percentage	≥ 3.5% -		GD01, Section C3 - Bioretention, § C3.2.3, Table 48 - SMAF 1
Required Footpr	-		m²	Calculated
Design Footprin			m²	Calculated - see table below
Footprint Area 0	Check	OKAY -		
Footprint Percer	ntage Achieved	3.5% -		
Minimum Infiltra	ation Rate	>	_/ m²/min	
			mm/hr	GD01, Section C3 - Bioretention, § C3.2.3, Table 48 - SMAF 1
Available Infiltra K _{SUBSOIL}	ition Rate		_/ m²/min mm/hr	Estimated permeability rate based on on-site testing as per Kahawai Point Special Housing Area Stormwater Management Plan prepared by Stormwater Solutions Consulting Limited (CKL LTD) dated 7th July, 2016.
SUBSOIL			n/hr	······································
Infiltration Rate	Check	OKAY -		
Time Period			days	GD01, Section C3 - Bioretention, § C3.2.3, Equation 10
nine renou			nrs	GD01, Section C3 - Bioretention, § C3.2.3, Equation 10
Storage Volume			m ³	Calculated
Infiltration Volu			m³	Calculated - GD01, Section C3 - Bioretention, § C3.2.3, Equation 10
Infiltration Volu		01011	m³	RILEY interpretation of GD01, Section C3, § C3.2.3, Equation 10 - Infil. vol. capacity must \geq than storage vol.
Infiltration Volu	inc.	1.02		RILEY interpretation of GD01, Section C3, § C3.2.3, Equation 10 - Infiltration vol. = storage volume.
Evapotranspiration Time Period		3 0	days	GD01, Section C3 - Bioretention, § C3.2.3, Equation 11
Rate			n/day	GD01, Section C3 - Bioretention, § C3.2.3, Equation 11 GD01, Section C3 - Bioretention, § C3.2.3, Equation 11
Volume			n³	Calculated - GD01, Section C3 - Bioretention, § C3.2.3, Equation 11
Detention				
Required Volum	ie	1.65 r	m³	Calculated = postdev vol - predev vol - retention volume
Available Volum			m³	Calculated from table below and GD01, Section C3 - Bioretention, § C3.2.3, Equation 8
Volume Check		OKAY -		
Retention				
Required Runoff	f Depth	5 r	nm	GD01, Section B1 - Design Processes, § B1.7.1, Table 10 - SMAF 1 & 2
nequirea nullon	p		n	Calculated
Required Volum			m ³	Calculated = 5mm x impervious area
Available Volum	ie		m³	Calculated - GD01, Section C3 - Bioretention, § C3.2.3, Equation 12
Volume Check		OKAY -		
Rain Garden Geon	netry Design			
		1		

Layer		Length			Width Depth							Area Void Space		Volume
		LFRONT	L _{REAR}	W _{SIDE-1}	W _{SIDE-2}	D		D _{MIN}		D _{MAX}	Α			VAVAILABLE
		Design	Design	Design	Design	Design		Criteria		Criteria	Design	Design	Criteria	Design
		(m)	(m)	(m)	(m)	(m)		(mm)		(mm)	(m²)	-	-	(m³)
	Total					0.000		0		N/A		100%	100%	0.00
Freeboard	Тор	7.300	7.300	2.600	2.600						18.98			
	Slope (1:H)	VERT	VERT	VERT	VERT									
	Total					0.200		200		N/A		100%	100%	3.55
Ponding	Тор	7.300	7.300	2.600	2.600						18.98			
	Slope (1:H)	VERT	1	1	1									
	Total					0.500		500		N/A		30%	30%	2.06
Media	Тор	6.900	6.900	2.400	2.400						16.56			
	Slope (1:H)	VERT	1	1	1									
	Total					0.100		100		100		30%	30%	0.32
Transition	Тор	5.900	5.900	1.900	1.900						11.21			
	Slope (1:H)	VERT	1	1	1									
	Total					0.300		200		300		35%	35%	1.08
Drainage	Тор	5.700	5.700	1.800	1.800						10.26			
	Slope (1:H)	VERT	VERT	VERT	VERT									
	Total					0.450	-	450		N/A		35%	35%	1.62
Storage	Тор	5.700	5.700	1.800	1.800						10.26			
	Slope (1:H)	VERT	VERT	VERT	VERT									
Total						1.550								

RILEY Ref:	210359			
Project:	Kahawai Point			Key
Stage:	5			## Input Design Variable CONSULTANTS
Date:	2/02/2022			## Input Design Requirement
Design By:	Morris Kleinjan			## Output Design Variable
Reviewed By:	LDG			## Output Design Requirement
Task:	Rain Garden Design	- as per GD01		
Background:	Kahawai Point is a s	ubdivision locat	ed within G	lenbrook, Auckland. Stage 5 is located south-east of Stage 4 and east of McLarin Road.
Requirements:	GD01: Stormwater	Management D	evices Guide	
Rain Garden		0		
Location/Name:	RG8 - JOAL 3 - North	'n		
Parameters		Units		References
		onics		
Catchment Areas		5.65	m²	
Total		565	m²	Based on Civil Design - refer to catchment drawing
Impervious Pervious		430	m²	Based on Civil Design - includes roading, kerb, & footpath areas Calculated
T CI VIOUS		155		
95th% 24hr Rainfall D	Depth	32	mm	as per GD01, B1.7.1, Table 10 & Figure 6 for SMAF 1
Runoff Volumes		4.0	m ³	Pre-development and post-development runoff volumes calculated as per GD01, Section B1 - Design Processes, § B1.7.1,
Pre-development Post-developmer		4.8	m³ m³	Tables 10 & 11 for SMAF 1 (95th percentile rainfall event as per GD01, § B1.7.1, Figure 6) using TP108.
Post-developmen	nu	10.4		TP108 hydrological calculations completed separately.
				Pre-development pervious areas - CN = 81 as per Kahawai Point Special Housing Area Stormwater Management Plan
				prepared by Stormwater Solutions Consulting Limited (CKL LTD) dated 7th July, 2016.
Ponding				Dest development perviews areas - CN = 74 - Imperviews areas - CN = 00
Required Footpri	int Percentage ≥	2 5.0%	-	GD01, Section C3 - Bioretention, § C3.2.3, Table 48 - SMAF 1
Required Footpri		21.50	m²	Calculated
Design Footprint		25.20	m²	Calculated - see table below
Area Check		ΟΚΑΥ	-	
Footprint Percen	tage Achieved	5.9%	-	Calculated
Storage				
Available Volume	e	2.38	m ³	Calculated
Infiltration				
Required Footpri	int Percentage ≥	2 3.5%	-	GD01, Section C3 - Bioretention, § C3.2.3, Table 48 - SMAF 1
Required Footpri	-	15.05	m²	Calculated
Design Footprint	Area	15.12	m²	Calculated - see table below
Footprint Area Cl	heck	OKAY	-	
Footprint Percen	tage Achieved	3.5%	-	
Minimum Infiltra	ition Rate >		L/ m²/min	
		2.00	mm/hr	GD01, Section C3 - Bioretention, § C3.2.3, Table 48 - SMAF 1
Available Infiltrat	tion Rate	0.123	L/ m²/min mm/hr	Estimated permeability rate based on on-site testing as per <i>Kahawai Point Special Housing Area Stormwater Management</i> <i>Plan</i> prepared by Stormwater Solutions Consulting Limited (CKL LTD) dated 7th July, 2016.
K _{SUBSOIL}		7.38	m/hr	
Infiltration Rate 0	Check	OKAY	-	
		3	days	GD01, Section C3 - Bioretention, § C3.2.3, Equation 10
Time Period		72	hrs	GD01, Section C3 - Bioretention, § C3.2.3, Equation 10
Storage Volume		2.38	m³	Calculated
Infiltration Volun	ne Capacity	8.03	m ³	Calculated - GD01, Section C3 - Bioretention, § C3.2.3, Equation 10
Infiltration Volun		OKAY	-	RILEY interpretation of GD01, Section C3, § C3.2.3, Equation 10 - Infil. vol. capacity must ≥ than storage vol.
Infiltration Volun	ne	2.38	m³	RILEY interpretation of GD01, Section C3, § C3.2.3, Equation 10 - Infiltration vol. = storage volume.
Evapotranspiration				
Time Period		3	days	GD01, Section C3 - Bioretention, § C3.2.3, Equation 11
Rate		0.003	m/day	GD01, Section C3 - Bioretention, § C3.2.3, Equation 11
Volume		0.23	m³	Calculated - GD01, Section C3 - Bioretention, § C3.2.3, Equation 11
Detention				
Required Volume		3.45	m ³	Calculated = postdev vol - predev vol - retention volume
Available Volume	e	9.70	m³	Calculated from table below and GD01, Section C3 - Bioretention, § C3.2.3, Equation 8
Volume Check		OKAY	-	
Retention				
Required Runoff	Depth	5	mm	GD01, Section B1 - Design Processes, § B1.7.1, Table 10 - SMAF 1 & 2
Required Volume		0.005	m m³	Calculated Calculated = 5mm x impervious area
Available Volume		2.15	m²	Calculated = Smm x Impervious area Calculated - GD01, Section C3 - Bioretention, § C3.2.3, Equation 12
Volume Check	-	OKAY	-	consister cost, section of protection, 3 calls, Equilibrium
Rain Garden Geom	etry Design			

Layer	Length		igth	Wi		Depth		Area	Void	Space	Volume	
		LFRONT	L _{REAR}	W _{SIDE-1}	W _{SIDE-2}	D	D _{MIN}	D _{MAX}	Α			VAVAILABLE
		Design	Design	Design	Design	Design	Criteria	Criteria	Design	Design	Criteria	Design
		(m)	(m)	(m)	(m)	(m)	(mm)	(mm)	(m²)	-	-	(m³)
	Total					0.000	0	 N/A		100%	100%	0.00
Freeboard	Тор	7.000	7.000	3.600	3.600				25.20			
	Slope (1:H)	VERT	VERT	VERT	VERT							
	Total					0.200	200	N/A		100%	100%	4.76
Ponding	Тор	7.000	7.000	3.600	3.600				25.20			
	Slope (1:H)	VERT	1	1	1							
	Total					0.500	500	N/A		30%	30%	2.88
Media	Тор	6.600	6.600	3.400	3.400				22.44			
	Slope (1:H)	VERT	1	1	1							
	Total					0.100	100	100		30%	30%	0.47
Transition	Тор	5.600	5.600	2.900	2.900				16.24			
	Slope (1:H)	VERT	1	1	1							
	Total					0.300	200	300		35%	35%	1.59
Drainage	Тор	5.400	5.400	2.800	2.800				15.12			
	Slope (1:H)	VERT	VERT	VERT	VERT							
	Total					0.450	450	N/A		35%	35%	2.38
Storage	Тор	5.400	5.400	2.800	2.800				15.12			
	Slope (1:H)	VERT	VERT	VERT	VERT							
Total						1.550						

RILEY Ref:	210359 Kabaurai Baint				K				EY
Project:	Kahawai Point				Key	In such Daniers March 199		CONSU	LTANTS
Stage: Date:	5				##	Input Design Variable			
Date: Design By:	2/02/2022 Morris Kleinjan				##	Input Design Requirement Output Design Variable			
Reviewed By:	LDG				##	Output Design Variable Output Design Requirement			
Task:	Rain Garden Design	- as per GD01			nn	output besign nequirement			
			tod within C	lanbrook Augkland St	an Finlanata	d couth past of Stage 4 and a	act of Mola	sin Dood	
Background:					age 5 is locate	ed south-east of Stage 4 and e	ast of IVICLA	irin koad.	
Requirements:	GD01: Stormwater I	vianagement L	Devices Guid	e					
Rain Garden									
Location/Name:	RG9 - JOAL 3 - South								
Parameters		Units		References					
Catchment Areas									
Total		400	m²	Based on Civil Design - re		-			
Impervious		290	m²	Based on Civil Design - in	cludes roading	, kerb, & footpath areas			
Pervious		110	m²	Calculated					
95th% 24hr Rainfall	Depth	32	mm	as per GD01, B1.7.1, Tab	e 10 & Figure 6	o for SMAF 1			
D (1)/ 1									
Runoff Volumes	nt	3.4	m ³	Pre-development and po	st-developmor	t runoff volumes calculated as p	er GD01 Soc	tion B1 - Design Proces	ses δ R1 7 1
Pre-developme Post-developme		6.9	m³			ntile rainfall event as per GD01, §		-	ыса, у 01./.1,
Post-developing	ent	0.5		TP108 hydrological calcu			,,8-		
						81 as per Kahawai Point Special I			nent Plan
						sulting Limited (CKL LTD) dated 7	th July, 2016		
Ponding									
Required Footp	rint Percentage ≥	5.0%	-	GD01, Section C3 - Bioret	ention, § C3.2.	3, Table 48 - SMAF 1			
Required Footp		14.50	m²	Calculated					
Design Footprin	nt Area	20.20	m²	Calculated - see table be	ow				
Area Check		OKAY	-						
Footprint Perce	entage Achieved	7.0%	-	Calculated					
Storage									
Available Volum	ne	1.61	m³	Calculated					
Infiltration									
Required Footp	rint Percentage ≥	3.5%	-	GD01, Section C3 - Bioret	ention, § C3.2.	3, Table 48 - SMAF 1			
Required Footp		10.15	m²	Calculated					
Design Footprin		10.20	m²	Calculated - see table be	ow				
Footprint Area		OKAY	-						
Footprint Perce	entage Achieved	3.5%	- L/ m²/min						
Minimum Infiltr	ration Rate >	2.00	mm/hr	GD01, Section C3 - Bioret	ention. § C3.2.	3. Table 48 - SMAF 1			
Available Infiltra	ation Rate	0.123				n-site testing as per Kahawai Poi	nt Special Ho	using Area Stormwater	Management
KSUBSOIL		7.38	mm/hr			Consulting Limited (CKL LTD) da			-
		0.007	m/hr						
Infiltration Rate	e Check	OKAY	-						
Time Period		3	days	GD01, Section C3 - Bioret					
		72	hrs	GD01, Section C3 - Bioret	ention, § C3.2.	3, Equation 10			
Storage Volume		1.61	m³ m³	Calculated	n C2 P:	tion & (2.2.2.2 Equation 10			
Infiltration Volu Infiltration Volu		5.42 OKAY	- m²			ition, § C3.2.3, Equation 10 3, § C3.2.3, Equation 10 - Infil. vo	l canacity m	ust > than storage yol	
Infiltration Volu		1.61	m ³			3, § C3.2.3, Equation 10 - Infiltrat			
Evapotranspiration					,			J .	
Time Period		3	days	GD01, Section C3 - Bioret	ention. 6 C3 2	3. Equation 11			
Rate		0.003	m/day	GD01, Section C3 - Bioret					
Volume		0.18	m ³			ition, § C3.2.3, Equation 11			
Detention									
Required Volum	ne	2.05	m ³	Calculated = postdev vol	- predev vol - r	etention volume			
Available Volum		7.29	m ³			Section C3 - Bioretention, § C3.2	.3, Equation	8	
Volume Check		OKAY	-						
Retention									
Required Runof	ff Depth	5	mm	GD01, Section B1 - Desig	n Processes, § E	31.7.1, Table 10 - SMAF 1 & 2			
		0.005	m	Calculated					
Required Volum		1.45	m ³	Calculated = 5mm x impe					
Available Volum	ne	1.79	m ³	Calculated - GD01, Section	n C3 - Bioreter	ition, § C3.2.3, Equation 12			
Volume Check		OKAY	-						
Rain Garden Geor	metry Design								
Layer		Len	gth	Width		Depth	Area	Void Space	Volume

Layer		Ler	ngth	Wi			Depth		Area Void		Space	Volume	
		LFRONT	LREAR	W _{SIDE-1}	W _{SIDE-2}	D		D _{MIN}	DMAX	Α			VAVAILABLE
		Design	Design	Design	Design	Design		Criteria	Criteria	Design	Design	Criteria	Design
		(m)	(m)	(m)	(m)	(m)		(mm)	(mm)	(m²)	-	-	(m³)
	Total					0.000		0	N/A		100%	100%	0.00
Freeboard	Тор	10.100	10.100	2.000	2.000					20.20			
	Slope (1:H)	VERT	VERT	VERT	VERT								
	Total					0.200		200	N/A		100%	100%	3.76
Ponding	Тор	10.100	10.100	2.000	2.000					20.20			
	Slope (1:H)	VERT	1	1	1								
	Total					0.500		500	N/A		30%	30%	2.14
Media	Тор	9.700	9.700	1.800	1.800					17.46			
	Slope (1:H)	VERT	1	1	1								
	Total					0.100		100	100		30%	30%	0.32
Transition	Тор	8.700	8.700	1.300	1.300					11.31			
	Slope (1:H)	VERT	1	1	1								
	Total					0.300		200	300		35%	35%	1.07
Drainage	Тор	8.500	8.500	1.200	1.200					10.20			
	Slope (1:H)	VERT	VERT	VERT	VERT								
	Total					0.450	-	450	N/A		35%	35%	1.61
Storage	Тор	8.500	8.500	1.200	1.200					10.20			
	Slope (1:H)	VERT	VERT	VERT	VERT								
Total						1.550							
						1.550							

RILEY Ref:	210359			
Project:	Kahawai Point			Key Key
Stage:	5			## Input Design Variable
Date:	2/02/2022			## Input Design Requirement
Design By:	Morris Kleinjan			## Output Design Variable
Reviewed By:	LDG			## Output Design Requirement
Task:	Rain Garden Desigr	n - as per GD01		
Background:	Kahawai Point is a s	subdivision locat	ed within G	lenbrook, Auckland. Stage 5 is located south-east of Stage 4 and east of McLarin Road.
Requirements:	GD01: Stormwater	Management D	evices Guide	
-	GDOI: Stormwater	Wanagement D	cvices dura	-
Rain Garden Location/Name:	RG10 - McLarin Roa	ad a		
	KG10 - WICLAIIII KO			- /
Parameters		Units		References
Catchment Areas				
Total		800	m²	Based on Civil Design - refer to catchment drawing
Impervious		540	m²	Based on Civil Design - includes roading, kerb, & footpath areas
Pervious		260	m²	Calculated
95th% 24hr Rainfall I	Denth	32	mm	as per GD01, B1.7.1, Table 10 & Figure 6 for SMAF 1
55th/6 24th Rainfall 2	Jeptil	52		
Runoff Volumes				
Pre-developmen	t	10.1	m ³	Pre-development and post-development runoff volumes calculated as per GD01, Section B1 - Design Processes, § B1.7.1,
Post-developme		12.9	m³	Tables 10 & 11 for SMAF 1 (95th percentile rainfall event as per GD01, § B1.7.1, Figure 6) using TP108.
				TP108 hydrological calculations completed separately.
				Pre-development pervious areas - CN = 81 as per Kahawai Point Special Housing Area Stormwater Management Plan
				prepared by Stormwater Solutions Consulting Limited (CKL LTD) dated 7th July, 2016.
Ponding				
Required Footpri	int Percentage	≥ 5.0%		GD01, Section C3 - Bioretention, § C3.2.3, Table 48 - SMAF 1
Required Footpri		27.00	m²	Calculated
Design Footprint	Area	35.52	m²	Calculated - see table below
Area Check		OKAY	-	
Footprint Percen	tage Achieved	6.6%	-	Calculated
Storage				
Available Volume	e	3.22	m ³	Calculated
Infiltration				
Required Footpri	int Percentage	≥ 3.5%	-	GD01, Section C3 - Bioretention, § C3.2.3, Table 48 - SMAF 1
Required Footpri		18.90	m²	Calculated
Design Footprint	Area	20.45	m²	Calculated - see table below
Footprint Area C	heck	OKAY	-	
Footprint Percen	tage Achieved	3.8%	-	
Minimum Infiltra	ition Rate	0.033	L/ m²/min	
		2.00	mm/hr	GD01, Section C3 - Bioretention, § C3.2.3, Table 48 - SMAF 1
Available Infiltrat	tion Rate	0.123		Estimated permeability rate based on on-site testing as per Kahawai Point Special Housing Area Stormwater Management
K _{SUBSOIL}		7.38	mm/hr	Plan prepared by Stormwater Solutions Consulting Limited (CKL LTD) dated 7th July, 2016.
Infilmation C :	Chl	0.007	m/hr	
Infiltration Rate	спеск	OKAY 2	- dave	CD01 Section C2 Discretention & C2.2.2 Equation 10
Time Period		3 72	days hrs	GD01, Section C3 - Bioretention, § C3.2.3, Equation 10 GD01, Section C3 - Bioretention, § C3.2.3, Equation 10
Storage Volume		3.22	m ³	Calculated
Infiltration Volum	ne Capacity	10.87	m ³	Calculated - GD01, Section C3 - Bioretention, § C3.2.3, Equation 10
Infiltration Volum		OKAY	-	RILEY interpretation of GD01, Section C3, \S C3.2.3, Equation 10 - Infil. vol. capacity must \ge than storage vol.
Infiltration Volum	ne	3.22	m ³	RILEY interpretation of GD01, Section C3, § C3.2.3, Equation 10 - Infiltration vol. = storage volume.
Evapotranspiration				-
Time Period		3	days	GD01, Section C3 - Bioretention, § C3.2.3, Equation 11
Rate		0.003	m/day	GD01, Section C3 - Bioretention, § C3.2.3, Equation 11
Volume		0.32	m ³	Calculated - GD01, Section C3 - Bioretention, § C3.2.3, Equation 11
Detention				
Required Volume	P	0.10	m ³	Calculated = postdev vol - predev vol - retention volume
Available Volume		13.49	m ³	Calculated from table below and GD01, Section C3 - Bioretention, § C3.2.3, Equation 8
Volume Check	-	OKAY	-	
Retention		5	mm	GD01, Section B1 - Design Processes, § B1.7.1, Table 10 - SMAF 1 & 2
Required Runoff	Depth	0.005	m	Calculated
Required Volume	e	2.70	m ³	Calculated = 5mm x impervious area
Available Volume		3.54	m³	Calculated - GD01, Section C3 - Bioretention, § C3.2.3, Equation 12
Volume Check		OKAY	-	
Rain Garden Geom	etry Design			

Layer		Ler	igth	Wi	dth			Depth		Area	Void	Space	Volume
		LFRONT	L _{REAR}	W _{SIDE-1}	W _{SIDE-2}	D		D _{MIN}	D _{MAX}	Α			VAVAILABLE
		Design	Design	Design	Design	Design		Criteria	Criteria	Design	Design	Criteria	Design
		(m)	(m)	(m)	(m)	(m)		(mm)	(mm)	(m²)	-	-	(m³)
	Total					0.000	:	0	N/A		100%	100%	0.00
Freeboard	Тор	16.000	16.000	2.220	2.220					35.52			
	Slope (1:H)	VERT	VERT	VERT	VERT								
	Total					0.200	:	200	N/A		100%	100%	6.70
Ponding	Тор	16.000	16.000	2.220	2.220					35.52			
	Slope (1:H)	VERT	1	1	1								
	Total					0.500		500	N/A		30%	30%	4.01
Media	Тор	15.600	15.600	2.020	2.020					31.51			
	Slope (1:H)	VERT	1	1	1								
	Total					0.100		100	100		30%	30%	0.64
Transition	Тор	14.600	14.600	1.520	1.520					22.19			
	Slope (1:H)	VERT	1	1	1								
	Total					0.300	:	200	300		35%	35%	2.15
Drainage	Тор	14.400	14.400	1.420	1.420					20.45			
	Slope (1:H)	VERT	VERT	VERT	VERT								
	Total					0.450		450	N/A		35%	35%	3.22
Storage	Тор	14.400	14.400	1.420	1.420					20.45			
	Slope (1:H)	VERT	VERT	VERT	VERT								
Total						1.550							

		4 Fred Thomas Drive, Takapuna, Auckland 0622 PO Box 100253, North Shore, Auckland 0745	Project No:	210359	Page	1	of	7
CONSULTANTS		Tel: 09 489 7872 Email: riley@riley.co.nz	Project:	Kawahai Point Stage 5 – 127 McLarin Road, Glenbrook				
		22 Moorhouse Avenue, Addington, Christchurch 8011 PO Box 4355, Christchurch 8140	Calc:	AR	Date:	20/12	2/202	:1
		Tel: 03 379 4402 Email: rileychch@riley.co.nz	Check:	LDG	Date:	8/02/2022)
Description: Stormwater reticulation design								

Background:

- A new residential subdivision is proposed at the above address, bulk earthworks are proposed to develop the site contours to facilitate development.
- New stormwater reticulation is proposed to service the development and discharge stormwater via new outfall pipe structures.
- The site is currently undeveloped (greenfield).
- A resource consent is required for the earthworks and future development.
- Refer RILEY DWG: 210359-360 for the preliminary stormwater layout, and 210359-361 for the stormwater catchments...

Objective:

- Design suitably sized stormwater reticulation network to convey stormwater for the 10year storm event from the future development and upstream catchment (149 McLarin Road), taking into consideration the proposed development contours.
- Design the proposed outfall structures rock riprap apron.
- It is intended that these calculations provide supporting information for resource consent application.

Design Philosophy:

- Undertake design to calculate the size of stormwater outfall pipes (2,3,4,5,6 & 7), and pipes 1a and 1b (which will convey flow from 149 McLarin Road). All of the proposed pipes are designed to be at 1% gradient.
- Capacity of the pipe is calculated using Colebrook-White formula
- Modelling undertaken using HEC-HMS 4.6 and in accordance with AC Stormwater Code of Practice and TP 108.
 - Design rainfall depth from TP108 including climate change factors as per Auckland Council CoP Version 3.0.
- Area Coverage
 - Residential lot- 65% impervious coverage
 - Commercial lot- 90% impervious coverage
 - Road- 72% impervious coverage
 - JOAL 1- 77% impervious coverage, JOAL 2 & 3- 78% impervious coverage
 - 127 McLarin Road 0% impervious coverage
- The new outfall structures are designed using Auckland Council TR2013-018.

		4 Fred Thomas Drive, Takapuna, Auckland 0622 PO Box 100253, North Shore, Auckland 0745	Project No:	210359	Page	2	of	7
CONSULTANTS		Tel: 09 489 7872 Email: riley@riley.co.nz	Project:	Kawahai Point Stage 5 – 127 McLarin Road, Glenbrook				arin
		22 Moorhouse Avenue, Addington, Christchurch 8011 PO Box 4355, Christchurch 8140	Calc:	AR	Date:	20/12	2/202	:1
		Tel: 03 379 4402 Email: rileychch@riley.co.nz	Check:	LDG	Date:	8/02/	2022	
Description: Stormwater reticulation design								

Catchment Assessment:

Soil Conditions

• Curve number (CN), initial abstraction (Ia), lag time (tp)

	CN	Ia (mm)	t _p (min)
Impervious	98	0	6.7
Pervious	74	5	6.7

- CN value based on Group C Hydrological Soil Classification and Table 3.3 in ARC TP108 (conservative). Initial abstraction based on Table 3.1 in ARC TP108.
- t_p = time of concentration (t_c) x 2/3. (assume 10 minutes for t_c)
 - = 6.67 minutes

<u>Note</u>

For catchment 1: Time of concentration= 13.33 minutes

Rainfall Depth

Storm Event	10% AEP	1%AEP
P ₂₄ , mm	120	180
Climate change factor	13.2%	16.8%
24-hour Rainfall Depths (mm) including climate change effects	136	210

HEC-HMS Model

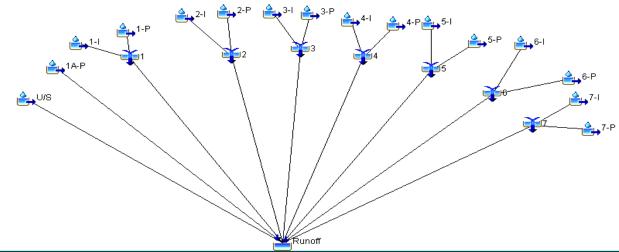
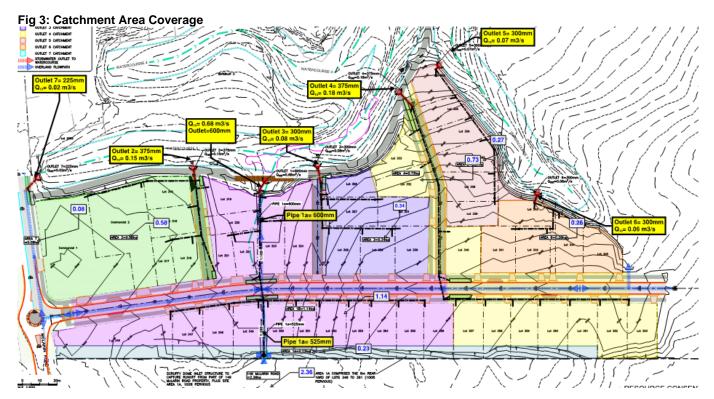


Fig1: HEC-HMS model layout

		4 Fred Thomas Drive, Takapuna, Auckland 0622 PO Box 100253, North Shore, Auckland 0745	Project No:	210359	Page	3	of	7
		Tel: 09 489 7872 Email: riley@riley.co.nz	Project:	Kawahai Point Stage 5 – 127 McLarin Road, Glenbrook				
		22 Moorhouse Avenue, Addington, Christchurch 8011 PO Box 4355, Christchurch 8140	Calc:	AR	Date:	20/12	2/202	1
		Tel: 03 379 4402 Email: rileychch@riley.co.nz	Check:	LDG	Date:	8/02/2022		
Description:	on: Stormwater reticulation design							


Catchment Assessment Results

• 10%AEP

	E	Project: Kahawai- tart of Run: 01Jan200 nd of Run: 02Jan200 compute Time:08Feb202	0, 00:00 Meter	lation Run: 10Year Model: Basin 1 prologic Model: 10Year ol Specifications:Control 1	
Show Elements: Initial Select Volume Units: 🔵 MM 🛞 1000 M3 Sorting: Hydrol					Sorting: Hydrol 🖂
Hydrologic Element		Drainage Area (KM2)	Peak Discharge (M3/S)	Time of Peak	Volume (1000 M3)
U/S		0.023566	0.28251	01Jan2000, 12:19	1.8171
1		0.011354	0.24325	01Jan2000, 12:12	1.3519
4		0.007345	0.15367	01Jan2000, 12:12	0.8504
2		0.005825	0.12641	01Jan2000, 12:12	0.7042
3		0.003411	0.06929	01Jan2000, 12:12	0.3814
5		0.002724	0.05534	01Jan2000, 12:12	0.3046
6		0.002623	0.05329	01Jan2000, 12:12	0.2933
1A-P		0.002333	0.03529	01Jan2000, 12:13	0.1805
7		0.000785	0.01771	01Jan2000, 12:12	0.0993

Fig2: HEC-HMS model output

Catchment Area

		4 Fred Thomas Drive, Takapuna, Auckland 0622 PO Box 100253, North Shore, Auckland 0745	Project No:	210359	Page	4	of	7
CONSULTANTS		Tel: 09 489 7872 Email: riley@riley.co.nz	Project:	Kawahai Point Stage 5 – 127 McLarin Road, Glenbrook				
		22 Moorhouse Avenue, Addington, Christchurch 8011 PO Box 4355, Christchurch 8140	Calc:	AR	Date:	20/12	2/202	21
		Tel: 03 379 4402 Email: rileychch@riley.co.nz	Check:	LDG Date: 8/0		8/02/	2022	2
Description: Stormwater reticulation design								

Proposed Stormwater pipe outfall

Table 2: Proposed Stormwater pipe sizes

Pipe	Diameter (mm)	Catchment	Catchment Area (m ²)	Flow (L/s)	Capacity (L/s)
1A	525	U/S (127 McLarin Rd), 1A	25,899	318	484
1B	600	U/S (127 McLarin Rd), 1A, 1B	37,253	561	688
Outlet 2	375	2	5,825	126	199
Outlet 3	300	3	3,411	69	111
Outlet 4	375	4	7,345	154	199
Outlet 5	300	5	2,724	55	111
Outlet 6	300	6	2,623	53	111
Outlet 7	225	7	785	18	51

Note:

- All the above pipes are designed at 1% gradient.
- The capacity of the pipes is calculated using Colebrook-white formula.

Proposed Pipe Capacities

Fig 4: Colebrook-white formula (1% gradient) - 525mm pipe

🕄 Colebrook-White Formula 🛛 🛛 🗙						
Variables						
Pipe Diameter (mm)	525 🗨					
Pipe Gradient 1:	100					
Kinematic Viscosity	Water 💌					
Sand Roughness, Ks	0.6 💌					
CALCUL	ATE					
Results						
Pipe Flow Rate (m3/s)	0.484					
Pipe Flow Rate (I/s)	484					
Velocity (m/s)	2.238					
Print To Default Printer	Quit					

		4 Fred Thomas Drive, Takapuna, Auckland 0622 PO Box 100253, North Shore, Auckland 0745	Project No:	210359	Page	5	of	7
CONSULTANTS		Tel: 09 489 7872 Email: riley@riley.co.nz	Project:	Kawahai Point Stage 5 – 127 McLarin Road, Glenbrook				
		22 Moorhouse Avenue, Addington, Christchurch 8011 PO Box 4355, Christchurch 8140	Calc:	AR	Date:	20/12	2/202	:1
		Tel: 03 379 4402 Email: rileychch@riley.co.nz	Check:	LDG	Date:	8/02/2022		:
Description:	Description: Stormwater reticulation design							

Fig 5: Colebrook-white formula (1% gradient)- 600mm pipe

🖪, Colebrook-White Formula 🛛 🗙						
Variables						
Pipe Diameter (mm)	600 👻					
Pipe Gradient 1:	100					
Kinematic Viscosity	Water 💌					
Sand Roughness, K	s 0.6 💌					
CALC	ULATE					
Results						
Pipe Flow Rate (m3	/s) 0.688					
Pipe Flow Rate (I/s)	688					
Velocity (m/s)	2.434					
Print To Default Printer	Quit					

Fig 6: Colebrook-white formula (1% gradient)- 375mm pipe

🛱, Colebrook-White Formula 🛛 🗙	
Variables	
Pipe Diameter (mm)	375 👻
Pipe Gradient 1:	100
Kinematic Viscosity	Water 💌
Sand Roughness, Ks	0.6 💌
CALCULATE	
Results	
Pipe Flow Rate (m3/s)	0.199
Pipe Flow Rate (I/s)	199
Velocity (m/s)	1.810
Print To Default Printer	Quit

Fig 7: Colebrook-white formula (1% gradient)- 300mm pipe

		4 Fred Thomas Drive, Takapuna, Auckland 0622		210359	Page	6	of	7
		Tel: 09 489 7872 Email: rilev@rilev.co.nz	Project:	Kawahai Point Stage 5 – 127 McLarin Road, Glenbrook				
		22 Moorhouse Avenue, Addington, Christchurch 8011 PO Box 4355, Christchurch 8140	Calc:	AR	Date:	20/12	2/202	1
		Tel: 03 379 4402 Email: rileychch@riley.co.nz	Check:	LDG	Date:	8/02/	2022	
Description:	Storm	nwater reticulation design						

🕄, Colebrook-White Formula

Variables	
Pipe Diameter (mm)	300 👻
Pipe Gradient 1:	100
Kinematic Viscosity	Water 👻
Sand Roughness, Ks	0.6
CALCUL	ATE
Results	
Results Pipe Flow Rate (m3/s)	0.111
	0.111
Pipe Flow Rate (m3/s)	

Fig 8: Colebrook-white formula (1% gradient)- 225mm pipe

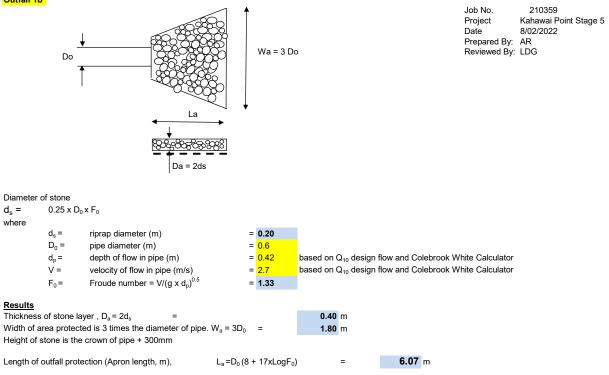
 \times

😫 Colebrook-White Formula $ imes$								
Variables								
Pipe Diameter (mm)	225	•						
Pipe Gradient 1:	100							
Kinematic Viscosity	Water	-						
Sand Roughness, Ks	0.6	-						
CALCUL	ATE							
Results								
Pipe Flow Rate (m3/s)	0.051							
Pipe Flow Rate (I/s)	51							
Velocity (m/s)	1.306							
Print To Default Printer	Quit							

Conclusion

Therefore, the pipes (indicated in Table 2) laid at 1% gradient will have adequate capacity to discharge the stormwater for a 10Year storm event.

		4 Fred Thomas Drive, Takapuna, Auckland 0622 PO Box 100253, North Shore, Auckland 0745		210359 Page 7 of				
		Tel: 09 489 7872 Email: riley@riley.co.nz	Project:	Kawahai Point Stage 5 – 127 McLarin Road, Glenbrook				
		22 Moorhouse Avenue, Addington, Christchurch 8011 PO Box 4355, Christchurch 8140	Calc:	AR	Date:	20/12	2/202	21
		Tel: 03 379 4402 Email: rileychch@riley.co.nz	Check:	LDG	Date:	8/02/	2022	2
Description:	Storn	nwater reticulation design						


Proposed Stormwater pipe outfall

- It is proposed to construct 7 new stormwater outfall structures to discharge stormwater to the existing watercourse.
- The new outfall will convey peak stormwater flows for a 10-Year storm event.
- For practical reasons, it is intended that all of the outfall structures will have a minimum gabion rock size of 150mm dia.
- Individual rock rip rap structure design spreadsheets has been appended with this calculation.

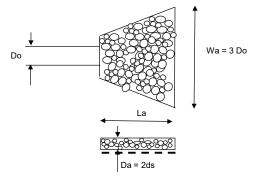

Outlet Ref:	Catchment Area (m²)	Pipe Dia. (mm)	Flows (L/s)	Rip Rap Apron Length (m)	Gabion Rock Size Dn₅₀ (mm)	Rock Thickness (mm)
1b	37,253	600	561	6.07	150	300
2	5,825	375	126	5.41	150	300
3	3,411	300	69	2.77	150	300
4	7,345	375	154	3.88	150	300
5	2,724	300	55	2.97	150	300
6	2,623	300	53	2.97	150	300
7	785	225	18	2.25	150	300

Table 3: Proposed Stormwater Outfall Structures

<u>RIPRAP DESIGN (TR2013-018)</u> Outfall 1b

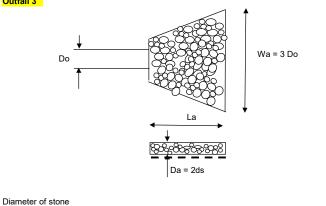
RIPRAP DESIGN (TR2013-018) Outfall 2

Job No. Project Date 210359 Kahawai Point Stage 5 8/02/2022 Prepared By: AR Reviewed By: LDG

Diameter of stone

d _s =	0.25 x D ₀ x F ₀	
where		

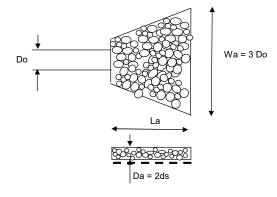
u _s –	0.20 X L	20 × 1 0			
where					
	d _s =	riprap diameter (m)	=	0.22	
	D ₀ =	pipe diameter (m)	=	0.375	
	d _p =	depth of flow in pipe (m)	=	0.225	
	V =	velocity of flow in pipe (m/s)	=	3.55	
	$F_0 =$	Froude number = V/(g x d _p) ^{0.5}	=	2.39	
Desults					
Results					
Thicknes	ss of stone	layer , D _a = 2d _s =			
Width of	f area prote	ected is 3 times the diameter of pipe. W	$I_{a} = 3D_{0}$	=	
Height o	of stone is t	he crown of pipe + 300mm			


 $L_a = D_0 (8 + 17xLogF_0)$

Length of outfall protection (Apron length, m),

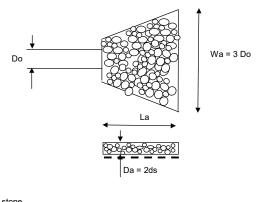
=

5.41 m


RIPRAP DESIGN (TR2013-018) Outfall 3

Job No.21ProjectKaharDate8/02/Prepared By:ARReviewed By:LDG 210359 Kahawai Point Stage 5 8/02/2022

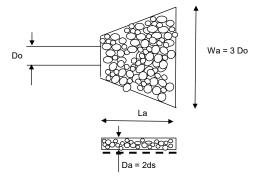
d _s = where	0.25 x E	D _o x F _o				
	d _s =	riprap diameter (m)	=	0.09		
	D ₀ =	pipe diameter (m)	=	0.3		
	d _p =	depth of flow in pipe (m)	=	0.18		
	V =	velocity of flow in pipe (m/s)	=	1.571		
	F ₀ =	Froude number = $V/(g \times d_p)^{0.5}$	=	1.18		
Width of	area prote	layer , $D_a = 2d_s =$ cted is 3 times the diameter of pip he crown of pipe + 300mm	e. W _a = 3D ₀	=	0.18 m 0.90 m	
Length o	f outfall pro	otection (Apron length, m),	L _a =D ₀ (8 +	17xLogF ₀)	=	2.77 m


<u>RIPRAP DESIGN (TR2013-018)</u> Outfall 4

Job No.210359ProjectKahawai Point Stage 5Date8/02/2022Prepared By:ARReviewed By:LDG

Diamete	r of stone					
d _s =	0.25 x D	D ₀ x F ₀				
where						
	d _s =	riprap diameter (m)	=	0.13		
	D ₀ =	pipe diameter (m)	=	0.375		
	d _p =	depth of flow in pipe (m)	=	0.263		
	V =	velocity of flow in pipe (m/s)	=	2.21		
	F ₀ =	Froude number = $V/(g \times d_p)^{0.5}$	=	1.38		
Results						
Thicknes	ss of stone	layer , D _a = 2d _s =			0.26 m	
Width of	area prote	ected is 3 times the diameter of pipe	e. W _a = 3D ₀	=	1.13 m	
Height of	f stone is t	he crown of pipe + 300mm				
Longth o	f outfall pr	ataction (Aprop longth m)	I -D (8 -	17vl ogE)	_	2 99
Length o	of outfall pr	otection (Apron length, m),	L _a =D ₀ (8 +	17xLogF ₀)	=	3.88

RIPRAP DESIGN (TR2013-018) Outfall 5



Job No.210359ProjectKahawai Point Stage 5Date8/02/2022Prepared By:ARReviewed By:LDG

Diameter of stone

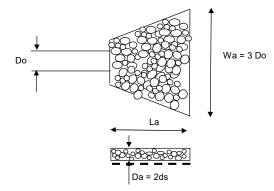
d _s = where	0.25 x D ₀	x F ₀						
	d _s =	riprap diameter (m)	=	0.10				
	D ₀ =	pipe diameter (m)	=	0.3				
	d _p =	depth of flow in pipe (m)	=	0.15				
	V =	velocity of flow in pipe (m/s)	=	1.571				
	F ₀ =	Froude number = V/(g x d _p) ^{0.5}	=	1.30				
Width of a								
Length of	outfall prot	ection (Apron length, m),	L _a =D ₀ (8 +	17xLogF ₀)	=	2.97 m		

<u>RIPRAP DESIGN (TR2013-018)</u> Outfall 6

Job No.210359ProjectKahawai Point Stage 5Date8/02/2022Prepared By:ARReviewed By:LDG

Diameter of stone

d _s =	0.25 x D	o x Fo
where		
	d _s =	riprap diameter (m)
	D ₀ =	pipe diameter (m)


	d _p =	depth of flow in pipe (m)	=	0.15			
	V =	velocity of flow in pipe (m/s)	=	1.571			
	$F_0 =$	Froude number = V/(g x d _p) ^{0.5}	=	1.30			
<u>Results</u> Thicknes	s of stone	layer, $D_a = 2d_s =$			0.19	m	
Width of area protected is 3 times the diameter of pipe. $W_a = 3D_0 =$						m	
Height of	f stone is t	he crown of pipe + 300mm					

= <mark>0.10</mark> = <mark>0.3</mark>

 $\label{eq:Length} \mbox{Length of outfall protection (Apron length, m),} \mbox{$L_a=D_0(8+17xLogF_0)$}$

= **2.97** m

<u>RIPRAP DESIGN (TR2013-018)</u> Outfall 7

Job No. Project 210359 Kahawai Point Stage 5 8/02/2022 Date Prepared By: AR Reviewed By: LDG

Diame	ter of	stone	

d_s = $0.25 \times D_0 \times F_0$

where

where					
	d _s =	riprap diameter (m)	=	0.07	
	D ₀ =	pipe diameter (m)	=	0.225	
	d _p =	depth of flow in pipe (m)	=	0.101	
	V =	velocity of flow in pipe (m/s)	=	1.306	
	F ₀ =	Froude number = V/(g x d _p) ^{0.5}	=	1.31	
Results					
Thicknes	s of stone	e layer , D _a = 2d _s =			0.15
Width of	area prote	ected is 3 times the diameter of pipe. V	$V_a = 3D_0$	=	0.68

Width of area protected is 3 times the diameter of pipe. $W_a = 3D_0$ = Height of stone is the crown of pipe + 300mm

Length of outfall protection (Apron length, m),

 $L_a = D_0 (8 + 17 \times Log F_0)$

=

2.25 m

Pipe No	<u>1b</u>										
Roughness	0.6	mm								SPECIFY GR	RADIENT
Diam(mm)	600	mm		0.0006						1 in	100
Gradient	0.01	m/m		0.6							
Kahawai Po	int Stage 5										
Stormwater (Outfalls									Gradient	0.010
PROPOR'N DEPTH	WETTED PERIMETER	AREA OF FLOW	HYDRAULIC MEAN DEPTH	(0)	Ks 14.8m	1.255v m(32)^.5	LOG	VELOCITY (m/s)	DISCHARGE (I/s)	DEPTH (mm)	SURFACE WIDTH _(mm)
0.01 0.02 0.03	0.1202009 0.1702765 0.2088996	0.0004786 0.0013495 0.0024716	0.0039813 0.0079252 0.0118314	0.112 0.158 0.193	0.0101827 0.0051154 0.0034265	0.0038071 0.0013556 0.0007432	-1.8541881 -2.1890296 -2.3798993	0.207 0.345 0.459		6 12 18	119 168 205

0.03	0.2088996	0.0024716	0.0118314	0.193	0.0034265	0.0007432	-2.3798993	0.459	1.13	18	205
0.04	0.2416295	0.0037936	0.0157000	0.222	0.0025822	0.0004862	-2.5130931	0.558	2.12	24	235
0.05	0.2706161	0.0052853	0.0195307	0.248	0.0020757	0.0003504	-2.615087	0.647	3.42	30	262
0.1	0.3861007	0.0147151	0.0381121	0.346	0.0010637	0.0001285	-2.9236292	1.011	14.88	60	360
0.15	0.4772393	0.0265949	0.0557265	0.418	0.0007275	7.27E-05	-3.0968059	1.295	34.44	90	428
0.2	0.5563771	0.0402566	0.0723548	0.477	0.0005603	4.914E-05	-3.2150679	1.532	61.67	120	480
0.25	0.6283185	0.0552766	0.0879755	0.525	0.0004608	3.665E-05	-3.3032351	1.736	95.96	150	520
0.3	0.6955677	0.0713406	0.1025646	0.567	0.0003953	2.912E-05	-3.3722401	1.913	136.47	180	550
0.35	0.7596622	0.088193	0.1160950	0.604	0.0003492	2.418E-05	-3.42785	2.069	182.47	210	572
0.4	0.821663	0.1056131	0.1285358	0.635	0.0003154	2.075E-05	-3.4734585	2.206	232.98	240	588
0.45	0.8823773	0.1234017	0.1398514	0.662	0.0002899	1.829E-05	-3.5112102	2.326	287.03	270	597
0.5	0.9424778	0.1413717	0.1500000	0.686	0.0002703	1.646E-05	-3.5425226	2.431	343.67	300	600
0.55	1.0025782	0.1593416	0.1589319	0.706	0.0002551	1.509E-05	-3.5683536	2.520	401.54	330	597
0.6	1.0632925	0.1771302	0.1665865	0.723	0.0002434	1.407E-05	-3.5893469	2.595	459.65	360	588
0.65	1.1252934	0.1945504	0.1728886	0.737	0.0002345	1.33E-05	-3.6059101	2.656	516.73	390	572
0.7	1.1893879	0.2114027	0.1777408	0.747	0.0002281	1.276E-05	-3.6182515	2.702	571.21	420	550
0.75	1.2566371	0.2274667	0.1810123	0.754	0.000224	1.242E-05	-3.6263813	2.733	621.67	450	520
0.8	1.3285785	0.2424868	0.1825160	0.757	0.0002221	1.227E-05	-3.6300684	2.747	666.11	480	480
0.85	1.4077163	0.2561484	0.1819603	0.756	0.0002228	1.232E-05	-3.6287095	2.742	702.36	510	428
0.9	1.4988549	0.2680282	0.1788220	0.749	0.0002267	1.265E-05	-3.620955	2.713	727.16	540	360
0.95	1.6143395	0.277458	0.1718709	0.734	0.0002359	1.342E-05	-3.6032773	2.646	734.15	570	262
1	1.8849556	0.2827433	0.1500000	0.686	0.0002703	1.646E-05	-3.5425226	2.431	687.35	600	0

Pipe No	2.000								
Roughness	0.6	mm						SPECIFY G	RADIENT
Diam(mm)	375	mm	0.0006					1 i	n 100
Gradient	0.01	m/m	0.375						
Kahawai Po	int Stage 5								
Stormwater	Outfalls							Gradient	0.010
PROPOR'N	WETTED	AREA OF	HYDRAULIC (32mgi)^.5	Ks	1.255v	 VELOCITY	DISCHARGE	DEPTH	SURFACE

0.01	0.0751256	0.0001869	0.0024883	0.088	0.0162923	0.007705	-1.6198363	0.143	0.03	4	75
0.02	0.1064228	0.0005271	0.0049532	0.125	0.0081847	0.0027435	-1.9614536	0.245	0.13	8	105
0.03	0.1305623	0.0009655	0.0073947	0.152	0.0054824	0.001504	-2.1557436	0.328	0.32	11	128
0.04	0.1510184	0.0014819	0.0098125	0.175	0.0041315	0.0009839	-2.2911163	0.402	0.60	15	147
0.05	0.1691351	0.0020646	0.0122067	0.196	0.0033212	0.0007091	-2.3946609	0.469	0.97	19	163
0.1	0.2413129	0.0057481	0.0238201	0.273	0.001702	0.0002601	-2.7072793	0.740	4.25	38	225
0.15	0.2982746	0.0103886	0.0348291	0.331	0.001164	0.0001471	-2.8823569	0.953	9.90	56	268
0.2	0.3477357	0.0157252	0.0452218	0.377	0.0008965	9.945E-05	-3.0017691	1.131	17.79	75	300
0.25	0.3926991	0.0215924	0.0549847	0.415	0.0007373	7.418E-05	-3.0907203	1.284	27.72	94	325
0.3	0.4347298	0.0278674	0.0641029	0.449	0.0006324	5.893E-05	-3.1602976	1.417	39.49	113	344
0.35	0.4747889	0.0344504	0.0725594	0.477	0.0005587	4.893E-05	-3.2163433	1.535	52.88	131	358
0.4	0.5135394	0.0412551	0.0803349	0.502	0.0005046	4.2E-05	-3.262293	1.638	67.58	150	367
0.45	0.5514858	0.0482038	0.0874071	0.524	0.0004638	3.701E-05	-3.3003163	1.729	83.34	169	373
0.5	0.5890486	0.0552233	0.0937500	0.542	0.0004324	3.332E-05	-3.3318468	1.807	99.79	188	375
0.55	0.6266114	0.0622428	0.0993324	0.558	0.0004081	3.055E-05	-3.3578531	1.875	116.71	206	373
0.6	0.6645578	0.0691915	0.1041166	0.572	0.0003894	2.847E-05	-3.3789855	1.931	133.61	225	367
0.65	0.7033084	0.0759962	0.1080554	0.582	0.0003752	2.693E-05	-3.3956566	1.977	150.24	244	358
0.7	0.7433674	0.0825792	0.1110880	0.590	0.0003649	2.583E-05	-3.4080773	2.012	166.15	263	344
0.75	0.7853982	0.0888542	0.1131327	0.596	0.0003583	2.513E-05	-3.4162588	2.036	180.91	281	325
0.8	0.8303615	0.0947214	0.1140725	0.598	0.0003554	2.482E-05	-3.4199692	2.046	193.80	300	300
0.85	0.8798227	0.100058	0.1137252	0.597	0.0003565	2.494E-05	-3.4186017	2.042	204.32	319	268
0.9	0.9367843	0.1046985	0.1117638	0.592	0.0003627	2.56E-05	-3.4107981	2.020	211.49	338	225
0.95	1.0089622	0.108382	0.1074193	0.581	0.0003774	2.717E-05	-3.3930067	1.970	213.51	356	163
1	1.1780972	0.1104466	0.0937500	0.542	0.0004324	3.332E-05	-3.3318468	1.807	199.58	375	0

Pipe No	<u>3.000</u>										CONSC
Roughness	0.6	mm								SPECIFY G	RADIENT
Diam(mm)	300	mm		0.0006						1 ir	n 100
Gradient	0.01	m/m		0.3							
Kahawai Po	int Stage 5										
Stormwater	Outfalls									Gradient	0.010
PROPOR'N	WETTED	AREA OF	HYDRAULIC ((32mgi)^.5	Ks	1.255v		VELOCITY	DISCHARGE	DEPTH	SURFACE
DEPTH	PERIMETER	FLOW	MEAN DEPTH		14.8m	m(32)^.5	LOG	(m/s)	(I/s)	(mm)	WIDTH (mm)
0.01	0.0601005	0 0001196	0 0010007	0 079	0.0203654	0 0107681	-1 5067716	0 110	0.01	3	3 6

0.01	0.0601005	0.0001196	0.0019907	0.079	0.0203654	0.0107681	-1.5067716	0.119	0.01	3	60
0.02	0.0851382	0.0003374	0.0039626	0.112	0.0102308	0.0038341	-1.8518615	0.207	0.07	6	84
0.03	0.1044498	0.0006179	0.0059157	0.136	0.006853	0.002102	-2.0479359	0.279	0.17	9	102
0.04	0.1208148	0.0009484	0.0078500	0.157	0.0051644	0.0013751	-2.1844567	0.343	0.33	12	118
0.05	0.135308	0.0013213	0.0097654	0.175	0.0041515	0.0009911	-2.2888237	0.401	0.53	15	131
0.1	0.1930503	0.0036788	0.0190560	0.245	0.0021274	0.0003636	-2.6036253	0.637	2.34	30	180
0.15	0.2386196	0.0066487	0.0278633	0.296	0.001455	0.0002056	-2.779732	0.822	5.47	45	214
0.2	0.2781886	0.0100641	0.0361774	0.337	0.0011206	0.000139	-2.8997701	0.977	9.83	60	240
0.25	0.3141593	0.0138192	0.0439877	0.372	0.0009216	0.0001037	-2.9891496	1.111	15.35	75	260
0.3	0.3477838	0.0178352	0.0512823	0.401	0.0007905	8.235E-05	-3.0590402	1.227	21.88	90	275
0.35	0.3798311	0.0220482	0.0580475	0.427	0.0006984	6.838E-05	-3.1153249	1.330	29.32	105	286
0.4	0.4108315	0.0264033	0.0642679	0.449	0.0006308	5.87E-05	-3.1614619	1.420	37.49	120	294
0.45	0.4411887	0.0308504	0.0699257	0.468	0.0005798	5.172E-05	-3.1996346	1.499	46.24	135	298
0.5	0.4712389	0.0353429	0.0750000	0.485	0.0005405	4.656E-05	-3.2312852	1.568	55.42	150	300
0.55	0.5012891	0.0398354	0.0794659	0.499	0.0005102	4.269E-05	-3.2573878	1.627	64.81	165	298
0.6	0.5316463	0.0442826	0.0832933	0.511	0.0004867	3.979E-05	-3.278597	1.676	74.22	180	294
0.65	0.5626467	0.0486376	0.0864443	0.521	0.000469	3.763E-05	-3.2953276	1.716	83.46	195	286
0.7	0.594694	0.0528507	0.0888704	0.528	0.0004562	3.61E-05	-3.3077919	1.747	92.33	210	275
0.75	0.6283185	0.0568667	0.0905061	0.533	0.0004479	3.513E-05	-3.316002	1.767	100.48	225	260
0.8	0.6642892	0.0606217	0.0912580	0.535	0.0004442	3.469E-05	-3.3197253	1.777	107.72	240	240
0.85	0.7038581	0.0640371	0.0909801	0.534	0.0004456	3.485E-05	-3.318353	1.773	113.54	255	214
0.9	0.7494275	0.0670071	0.0894110	0.530	0.0004534	3.577E-05	-3.3105222	1.754	117.53	270	180
0.95	0.8071698	0.0693645	0.0859355	0.519	0.0004718	3.796E-05	-3.2926683	1.710	118.61	285	131
1	0.9424778	0.0706858	0.0750000	0.485	0.0005405	4.656E-05	-3.2312852	1.568	110.84	300	0

Pipe No	<u>4.000</u>	<u>.</u>									
Roughness	0.6	mm								SPECIFY G	RADIENT
Diam(mm)	375	mm		0.0006						1 in	n 100
Gradient	0.01	m/m		0.375							
Kahawai Po	int Stage 5										
Stormwater (Outfalls									Gradient	0.010
PROPOR'N DEPTH	WETTED PERIMETER	AREA OF FLOW	HYDRAULIC MEAN DEPTH		Ks 14.8m	1.255v m(32)^.5	LOG	VELOCITY (m/s)	DISCHARGE (l/s)	DEPTH (mm)	SURFACE WIDTH (mm)
0.01	0.0751256	0.0001869		0.088	0.0162923		-1.6198363	0.143			
0.02	0.1064228	0.0005271	0.0049532	0.125	0.0081847	0.0027435	-1.9614536	0.245	0.13	8	105
0.03	0.1305623	0.0009655	0.0073947	0.152	0.0054824	0.001504	-2.1557436	0.328	0.32	11	128

0.03	0.1305623	0.0009655	0.0073947	0.152	0.0054824	0.001504	-2.1557436	0.328	0.32	11	128
0.04	0.1510184	0.0014819	0.0098125	0.175	0.0041315	0.0009839	-2.2911163	0.402	0.60	15	147
0.05	0.1691351	0.0020646	0.0122067	0.196	0.0033212	0.0007091	-2.3946609	0.469	0.97	19	163
0.1	0.2413129	0.0057481	0.0238201	0.273	0.001702	0.0002601	-2.7072793	0.740	4.25	38	225
0.15	0.2982746	0.0103886	0.0348291	0.331	0.001164	0.0001471	-2.8823569	0.953	9.90	56	268
0.2	0.3477357	0.0157252	0.0452218	0.377	0.0008965	9.945E-05	-3.0017691	1.131	17.79	75	300
0.25	0.3926991	0.0215924	0.0549847	0.415	0.0007373	7.418E-05	-3.0907203	1.284	27.72	94	325
0.3	0.4347298	0.0278674	0.0641029	0.449	0.0006324	5.893E-05	-3.1602976	1.417	39.49	113	344
0.35	0.4747889	0.0344504	0.0725594	0.477	0.0005587	4.893E-05	-3.2163433	1.535	52.88	131	358
0.4	0.5135394	0.0412551	0.0803349	0.502	0.0005046	4.2E-05	-3.262293	1.638	67.58	150	367
0.45	0.5514858	0.0482038	0.0874071	0.524	0.0004638	3.701E-05	-3.3003163	1.729	83.34	169	373
0.5	0.5890486	0.0552233	0.0937500	0.542	0.0004324	3.332E-05	-3.3318468	1.807	99.79	188	375
0.55	0.6266114	0.0622428	0.0993324	0.558	0.0004081	3.055E-05	-3.3578531	1.875	116.71	206	373
0.6	0.6645578	0.0691915	0.1041166	0.572	0.0003894	2.847E-05	-3.3789855	1.931	133.61	225	367
0.65	0.7033084	0.0759962	0.1080554	0.582	0.0003752	2.693E-05	-3.3956566	1.977	150.24	244	358
0.7	0.7433674	0.0825792	0.1110880	0.590	0.0003649	2.583E-05	-3.4080773	2.012	166.15	263	344
0.75	0.7853982	0.0888542	0.1131327	0.596	0.0003583	2.513E-05	-3.4162588	2.036	180.91	281	325
0.8	0.8303615	0.0947214	0.1140725	0.598	0.0003554	2.482E-05	-3.4199692	2.046	193.80	300	300
0.85	0.8798227	0.100058	0.1137252	0.597	0.0003565	2.494E-05	-3.4186017	2.042	204.32	319	268
0.9	0.9367843	0.1046985	0.1117638	0.592	0.0003627	2.56E-05	-3.4107981	2.020	211.49	338	225
0.95	1.0089622	0.108382	0.1074193	0.581	0.0003774	2.717E-05	-3.3930067	1.970	213.51	356	163
1	1.1780972	0.1104466	0.0937500	0.542	0.0004324	3.332E-05	-3.3318468	1.807	199.58	375	0

 0.5
 0.4712389
 0.0353429
 0.0750000

 0.55
 0.5012891
 0.0398354
 0.0794659

0.6 0.5316463 0.0442826 0.0832933

 $0.75 \quad 0.6283185 \quad 0.0568667 \quad 0.0905061$

0.85 0.7038581 0.0640371 0.0909801

0.95 0.8071698 0.0693645 0.0859355

1 0.9424778 0.0706858 0.0750000

0.9 0.7494275 0.0670071

0.594694 0.0528507 0.0888704

0.0606217

0.0486376 0.0864443

0.0912580

0.0894110

0.65 0.5626467

0.8 0.6642892

0.7

Pipe No	<u>5.000</u>										
Roughness	0.6	mm								SPECIFY GI	RADIENT
Diam(mm)	300	mm		0.0006						1 ir	า 10
Gradient	0.01	m/m		0.3							
Kahawai Po	int Stage 5										
Stormwater (Outfalls									Gradient	0.01
PROPOR'N DEPTH	WETTED PERIMETER	AREA OF FLOW	HYDRAULIC MEAN DEPTH		Ks 14.8m	1.255v m(32)^.5	LOG	VELOCITY (m/s)	DISCHARGE (I/s)	DEPTH (mm)	SURFACE WIDTH
0.01	0.0601005	0.0001196		0.079	0.0203654	0.0107681	-1.5067716	0.119		3	6
0.02	0.0851382	0.0003374		0.112	0.0102308	0.0038341	-1.8518615	0.207		6	8
0.03	0.1044498	0.0006179		0.136	0.006853	0.002102	-2.0479359	0.279			10
0.04	0.1208148	0.0009484	0.0078500	0.157	0.0051644	0.0013751	-2.1844567	0.343	0.33	12	11
0.05	0.135308	0.0013213	0.0097654	0.175	0.0041515	0.0009911	-2.2888237	0.401	0.53	15	13
0.1	0.1930503	0.0036788	0.0190560	0.245	0.0021274	0.0003636	-2.6036253	0.637	2.34	30	18
0.15	0.2386196	0.0066487	0.0278633	0.296	0.001455	0.0002056	-2.779732	0.822	5.47	45	21
0.2	0.2781886	0.0100641	0.0361774	0.337	0.0011206	0.000139	-2.8997701	0.977	9.83	60	24
0.25	0.3141593	0.0138192	0.0439877	0.372	0.0009216	0.0001037	-2.9891496	1.111	15.35	75	26
0.3	0.3477838	0.0178352	0.0512823	0.401	0.0007905	8.235E-05	-3.0590402	1.227	21.88	90	27
0.35	0.3798311	0.0220482	0.0580475	0.427	0.0006984	6.838E-05	-3.1153249	1.330	29.32	105	28
0.4	0.4108315	0.0264033	0.0642679	0.449	0.0006308	5.87E-05	-3.1614619	1.420	37.49	120	29
0.45	0.4411887	0.0308504	0.0699257	0.468	0.0005798	5.172E-05	-3.1996346	1.499	46.24	135	29

 0.485
 0.0005405
 4.656E-05
 -3.2312852

 0.499
 0.0005102
 4.269E-05
 -3.2573878

3.979E-05 -3.278597

3.763E-05 -3.2953276

3.61E-05 -3.3077919

3.513E-05 -3.316002

3.469E-05 -3.3197253

3.485E-05 -3.318353

3.796E-05 -3.2926683

0.0004534 3.577E-05 -3.3105222

0.485 0.0005405 4.656E-05 -3.2312852

0.0004867

0.000469

0.0004562

0.0004479

0.0004442

0.0004456

0.0004718

0.511

0.521

0.528

0.533

0.535

0.534

0.530

0.519

1 568

1.627

1.676

1.716

1.747

1.767

1.777

1.773

1.754

1.710

1.568

150

165

180

195

210

225

240

255

270

285

300

55 42

64.81

74.22

83.46

92.33

100.48

107.72

113.54

117.53

118.61

110.84

300

298

294

286

275

260

240

214

180

131

0

0.6 0.5316463 0.0442826 0.0832933

0.85 0.7038581 0.0640371 0.0909801

1 0.9424778 0.0706858 0.0750000

0.0486376

0.0528507

0.0606217

0.0864443

0.0888704

0.0905061

0.0912580

0.0894110

0.0693645 0.0859355

0.65 0.5626467

0.8 0.6642892

0.95 0.8071698

0.594694

0.75 0.6283185 0.0568667

0.9 0.7494275 0.0670071

0.7

74.22

83.46

92.33

100.48

107.72

113.54

117.53

118.61

110.84

180

195

210

225

240

255

270

285

300

294

286

275

260

240

214

180

131

0

1.676

1.716

1.747

1.767

1.777

1.773

1.754

1.710

1.568

Pipe No	<u>6.000</u>										
Roughness	0.6	mm								SPECIFY GR	RADIENT
Diam(mm)	300	mm		0.0006						1 in	n 100
Gradient	0.01	m/m		0.3							
Kahawai Po	int Stage 5										
Stormwater (Outfalls									Gradient	0.010
PROPOR'N	WETTED	AREA OF	HYDRAULIC	(32mgi)^.5	Ks	1.255v		VELOCITY	DISCHARGE	DEPTH	SURFACE
DEPTH	PERIMETER	FLOW	MEAN DEPTH	1	14.8m	m(32)^.5	LOG	(m/s)	(l/s)	(mm)	WIDTH (mm)
0.01	0.0601005	0.0001196	0.0019907	0.079	0.0203654	0.0107681	-1.5067716	0.119	0.01	3	60
0.02	0.0851382	0.0003374	0.0039626	0.112	0.0102308	0.0038341	-1.8518615	0.207	0.07	6	84
0.03	0.1044498	0.0006179	0.0059157	0.136	0.006853	0.002102	-2.0479359	0.279	0.17	9	102
0.04	0.1208148	0.0009484	0.0078500	0.157	0.0051644	0.0013751	-2.1844567	0.343	0.33	12	118
0.05	0.135308	0.0013213	0.0097654	0.175	0.0041515	0.0009911	-2.2888237	0.401	0.53	15	131
0.1	0.1930503	0.0036788	0.0190560	0.245	0.0021274	0.0003636	-2.6036253	0.637	2.34	30	180
0.15	0.2386196	0.0066487	0.0278633	0.296	0.001455	0.0002056	-2.779732	0.822	5.47	45	214
0.2	0.2781886	0.0100641	0.0361774	0.337	0.0011206	0.000139	-2.8997701	0.977	9.83	60	240
0.25	0.3141593	0.0138192	0.0439877	0.372	0.0009216	0.0001037	-2.9891496	1.111	15.35	75	260
0.3	0.3477838	0.0178352	0.0512823	0.401	0.0007905	8.235E-05	-3.0590402	1.227	21.88	90	275
0.35	0.3798311	0.0220482	0.0580475	0.427	0.0006984	6.838E-05	-3.1153249	1.330	29.32	105	286
0.4	0.4108315	0.0264033	0.0642679	0.449	0.0006308	5.87E-05	-3.1614619	1.420	37.49	120	294
0.45	0.4411887	0.0308504	0.0699257	0.468	0.0005798	5.172E-05	-3.1996346	1.499	46.24	135	298
0.5	0.4712389	0.0353429	0.0750000	0.485	0.0005405	4.656E-05	-3.2312852	1.568	55.42	150	300
0.55	0.5012891	0.0398354	0.0794659	0.499	0.0005102	4.269E-05	-3.2573878	1.627	64.81	165	298

0.511

0.521

0.528

0.533

0.535

0.534

0.530

0.519

0.0004867

0.000469

0.0004562

0.0004479

0.0004442

0.0004456

0.0004718

3.979E-05 -3.278597

3.763E-05 -3.2953276

3.61E-05 -3.3077919

3.513E-05 -3.316002

3.469E-05 -3.3197253

3.485E-05 -3.318353

3.796E-05 -3.2926683

0.0004534 3.577E-05 -3.3105222

0.485 0.0005405 4.656E-05 -3.2312852

Pipe No	<u>7.000</u>										
Roughness	0.6	mm								SPECIFY GF	RADIENT
Diam(mm)	225	mm		0.0006						1 in	10
Gradient	0.01	m/m		0.225							
Kahawai Po	int Stage 5										
Stormwater (Outfalls									Gradient	0.01
PROPOR'N	WETTED	AREA OF	HYDRAULIC	(32mai)^ 5	 Ks	1.255v			DISCHARGE	DEPTH	SURFACE
DEPTH	PERIMETER	FLOW	MEAN DEPTH		14.8m	m(32)^.5	LOG	(m/s)	(l/s)	(mm)	WIDTH
		1601			14.011	11(02) .0	200	(11/3)	(13)	(11111)	(mm)
0.01	0.0450753	6.73E-05	0.0014930	0.068	0.0271539	0.0165786	-1.3591958	0.093	0.01	2	4
0.02	0.0638537	0.0001898	0.0029719	0.097	0.0136411	0.005903	-1.7089835	0.165	0.03	5	(
0.03	0.0783374	0.0003476	0.0044368	0.118	0.0091374	0.0032362	-1.9075067	0.225	0.08	7	
0.04	0.0906111	0.0005335	0.0058875	0.136	0.0068859	0.0021171	-2.0456154	0.278	0.15	9	;
0.05	0.101481	0.0007432	0.0073240	0.152	0.0055353	0.0015258	-2.1511263	0.326	0.24	11	
0.1	0.1447877	0.0020693	0.0142920	0.212	0.0028366	0.0005597	-2.4689897	0.523	1.08	23	1
0.15	0.1789647	0.0037399	0.0208975	0.256	0.00194	0.0003166	-2.6465525	0.678	2.54	34	1
0.2	0.2086414	0.0056611	0.0271331	0.292	0.0014941	0.000214	-2.7674804	0.808	4.57	45	1
0.25	0.2356194	0.0077733	0.0329908	0.322	0.0012288	0.0001596	-2.8574705	0.919	7.14	56	1
0.3	0.2608379	0.0100323	0.0384617	0.347	0.001054	0.0001268	-2.9278086	1.017	10.20	68	20
0.35	0.2848733	0.0124021	0.0435356	0.370	0.0009312	0.0001053	-2.9844352	1.103	13.68	79	2
0.4	0.3081236	0.0148518	0.0482009	0.389	0.0008411	9.038E-05	-3.0308407	1.179	17.51	90	2
0.45	0.3308915	0.0173534	0.0524443	0.406	0.000773	7.963E-05	-3.0692276	1.245	21.60	101	22
0.5	0.3534292	0.0198804	0.0562500	0.420	0.0007207	7.169E-05	-3.1010504	1.303	25.90	113	22
0.55	0.3759668	0.0224074	0.0595994	0.432	0.0006802	6.573E-05	-3.1272915	1.352	30.29	124	2
0.6	0.3987347	0.0249089	0.0624699	0.443	0.000649	6.125E-05	-3.1486109	1.394	34.72	135	2
0.65	0.421985	0.0273586	0.0648332	0.451	0.0006253	5.793E-05	-3.1654269	1.428	39.07	146	2
0.7	0.4460205	0.0297285	0.0666528	0.457	0.0006082	5.558E-05	-3.1779541	1.453	43.20	158	2
0.75	0.4712389	0.0319875	0.0678796	0.462	0.0005972	5.408E-05	-3.1862052	1.471	47.05	169	1
0.8	0.4982169	0.0340997	0.0684435	0.463	0.0005923	5.341E-05	-3.189947	1.478	50.40	180	1
0.85	0.5278936	0.0360209	0.0682351	0.463	0.0005941	5.366E-05	-3.1885679	1.476	53.17	191	10
0.9	0.5620706	0.0376915	0.0670583	0.459	0.0006046	5.508E-05	-3.1806981	1.459	54.99	203	1
0.95	0.6053773	0.0390175	0.0644516	0.450	0.000629	5.845E-05	-3.1627541	1.422	55.48	214	9
1	0.7068583	0.0397608	0.0562500	0.420	0.0007207	7.169E-05	-3.1010504	1.303	51.81	225	

APPENDIX C

Overland Flow Path Calculations RILEY CONSULTANTS LTD New Zealand Email: riley@riley.co.nz Email: rileychch@riley.co.nz Web: www.riley.co.nz

AUCKLAND

4 Fred Thomas Drive, Takapuna, Auckland 0622 PO Box 100253, North Shore, Auckland 0745 Tel: +64 9 489 7872 Fax: +64 9 489 7873

CHRISTCHURCH 22 Moorhouse Avenue, Addington, Christchurch 8011 PO Box 4355, Christchurch 8140 Tel: +64 3 379 4402 Fax: +64 3 379 4403

KAHAWAI POINT – STAGE 5 127 MCLARIN ROAD, GLENBROOK OVERLAND FLOW PATH DESIGN CALCULATIONS

Prepared for:

Kahawai Point Development Ltd

Prepared by:

Aditya Raamkumar, Civil Engineer K.R. Adty

.....

Checked by:

Morris Kleinjan, Civil Engineer

Reviewed and approved for issue by:

Steven James, Project Director, CPEng

Project reference:

210359

Date:

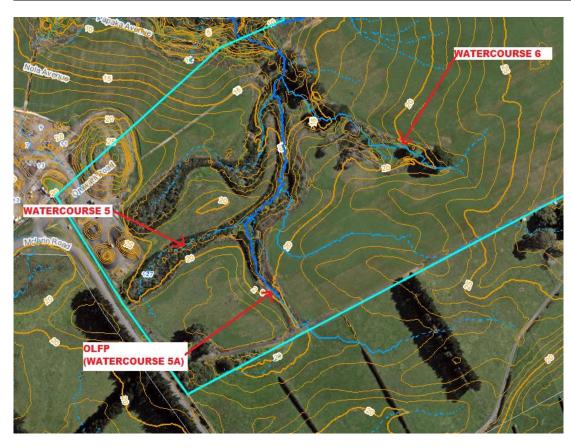
28 October 2021

		4 Fred Thomas Drive, Takapuna, Auckland 0622 PO Box 100253, North Shore, Auckland 0745	Project No:	210359	Page	1	of	6
		Tel: 09 489 7872 Email: riley@riley.co.nz	Project:	Kawahai Point Stage 5 – 127 McLarin Road, Glenbrook				
		22 Moorhouse Avenue, Addington, Christchurch 8011 PO Box 4355, Christchurch 8140		AR	Date:	04/10	0/202	:1
		Tel: 03 379 4402 Email: rileychch@riley.co.nz	Check:	МК	Date:	28/10	0/202	:1
Description: (Overl	and Flow Path Calculations						

Background:

- A new residential subdivision is proposed at the above address, bulk earthworks are proposed to develop the site contours to facilitate development.
- The bulk earthworks will result in modification to existing overland flow paths (OLFP) through the site. The flow path is shown in figure 1 below the Ecology Report identifies it as 'Watercourse 5A'
- The site is currently undeveloped (greenfield).
- A resource consent is required for the earthworks and future development.
- Refer RILEY DWG: 210359-303 for proposed development and OLFP details.

Objective:


- Design suitably sized swales to convey overland flow from the 100year storm event from the future development and upstream catchment (OLFP '5A'), taking into consideration the proposed development contours.
- It is intended that these calculations provide supporting information for resource consent application.

Design Philosophy:

- Undertake preliminary design options for Trapezoidal shaped swales, split into two sections:
 - Swale 1 southern site boundary to future road reserve.
 - $\circ \quad \ \ Swale 2-future \ road \ reserve \ to \ downstream \ watercourse$
- Consider the post development runoff from the site and future primary (piped) stormwater reticulation
- Modelling undertaken using HEC-HMS 4.6 and in accordance with AC Stormwater Code of Practice and TP 108.
 - Design rainfall depth from TP108 including climate change factors as per Auckland Council CoP.

Figure 1 – existing OLFP '5A' as shown on Council Geomaps

		4 Fred Thomas Drive, Takapuna, Auckland 0622 PO Box 100253, North Shore, Auckland 0745	Project No:	210359	Page	2	of	6
		Tel: 09 489 7872 Email: riley@riley.co.nz	Project:	Kawahai Point Stage 5 – 127 McLarin Road, Glenbrook				
		2 Moorhouse Avenue, Addington, Christchurch 8011 20 Box 4355, Christchurch 8140	Calc:	AR	Date:	04/10)/202	1
		Tel: 03 379 4402 Email: rileychch@riley.co.nz	Check:	МК	Date:	28/10)/202	1
Description: Overland Flow Path Calculations								

Catchment Assessment:

Soil Conditions

• Curve number (CN), initial abstraction (Ia), lag time (tp)

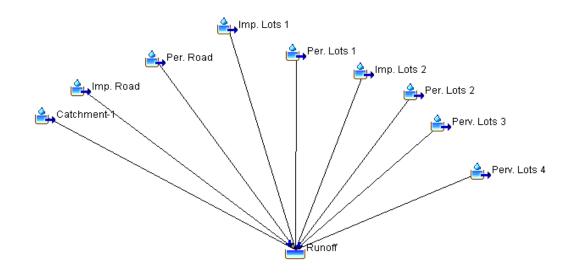
	CN	l₂ (mm)	t _p (min)
Impervious	98	0	6.7
Pervious	74	5	6.7

- CN value based on Group C Hydrological Soil Classification and Table 3.3 in ARC TP108 (conservative). Initial abstraction based on Table 3.1 in ARC TP108.
- t_p = time of concentration (t_c) x 2/3. (assume 10 minutes for t_c)

= 6.67 minutes

Note

For catchment 1: Time of concentration= 20 minutes


Rainfall Depth

Storm Event	10% AEP	1%AEP
P ₂₄ , mm	120	180

	4 Fred Thomas Drive, Takapuna, Auckland 0622 PO Box 100253, North Shore, Auckland 0745	Project No:	210359	Page	3	of	6
	Tel: 09 489 7872 Email: riley@riley.co.nz	Project:	Kawahai Point Stage 5 – 127 McLarin Road, Glenbrook				
	22 Moorhouse Avenue, Addington, Christchurch 8011 PO Box 4355, Christchurch 8140	Calc:	AR	Date:	04/10)/202	21
	Tel: 03 379 4402 Email: rileychch@riley.co.nz	Check:	МК	Date:	28/10/2021		21
Description: Over	land Flow Path Calculations						

Climate change factor	30.8%	32.7%
24-hour Rainfall Depths (mm) including climate change effects	157	239

HEC-HMS Model

Catchment Assessment Results

• 1%AEP				
	Project: Kahaw	ai Point S5 Simulatio	on Run: 100Year	
	Start of Run: 01Jan200 End of Run: 02Jan200 Compute Time:04Oct202	0, 00:00 Meteo	Model: Basin 1 vrologic Model: 100Year ol Specifications:Control 1	
Show Elements: All Eleme >	r Vo	olume Units: 🛞 MM () 1000 M3	Sorting: Hydrol $$
Hydrologic Element	Drainage Area (KM2)	Peak Discharge (M3/S)	Time of Peak	Volume (MM)
Catchment-1	0.023566	0.61657	01Jan2000, 12:19	167.92
Runoff	0.042806	1.20575	01Jan2000, 12:14	173.50
Imp. Lots 2	0.004369	0.14342	01Jan2000, 12:13	168.44
Imp. Road	0.003553	0.14510	01Jan2000, 12:12	232.89
Per. Lots 2	0.002353	0.07724	01Jan2000, 12:13	168.44
Per, Road	0.002145	0.07042	01Jan2000, 12:13	168.44
Perv. Lots 3	0.001952	0.06408	01Jan2000, 12:13	168.44
Imp. Lots 1	0.001933	0.06346	01Jan2000, 12:13	168.44
Perv. Lots 4	0.001894	0.06218	01Jan2000, 12:13	168.44
Per, Lots 1	0.001041	0.03417	01Jan2000, 12:13	168.44

• 10%AEP

			4 Fred Thomas Drive, Takapuna, Auckland 0622 Pr PO Box 100253, North Shore, Auckland 0745		210359	Page	4	of	6
			Tel: 09 489 7872 Email: riley@riley.co.nz	Project:	Kawahai Point Stage 5 – 127 McLarin Road, Glenbrook				
ľ			22 Moorhouse Avenue, Addington, Christchurch 8011 PO Box 4355, Christchurch 8140		AR	Date:	04/10)/202	1
			Tel: 03 379 4402 Email: rileychch@riley.co.nz	Check:	МК	Date:	28/10)/202	1
Description: Overland Flow Path Calculations									

Er	Project: Kahaw art of Run: 01Jan200 nd of Run: 02Jan200 ompute Time:04Oct202	0, 00:00 Meteo	on Run: 10Year Model: Basin 1 rologic Model: 10Year ol Specifications:Control 1	
Show Elements: All Eleme \vee	Vo	olume Units: 🔘 MM (1000 M3	Sorting: Hydrol 🗸
Hydrologic Element	Drainage Area (KM2)	Peak Discharge (M3/S)	Time of Peak	Volume (1000 M3)
Catchment-1	0.023566	0.34893	01Jan2000, 12:19	2.2426
Runoff	0.042806	0.69389	01Jan2000, 12:14	4.2792
Imp. Lots 2	0.004369	0.08148	01Jan2000, 12:13	0.4172
Imp. Road	0.003553	0.09514	01Jan2000, 12:12	0.5388
Per, Lots 2	0.002353	0.04388	01Jan2000, 12:13	0.2247
Per. Road	0.002145	0.04001	01Jan2000, 12:13	0.2048
Perv. Lots 3	0.001952	0.03641	01Jan2000, 12:13	0.1864
Imp. Lots 1	0.001933	0.03605	01Jan2000, 12:13	0.1846
Perv. Lots 4	0.001894	0.03532	01Jan2000, 12:13	0.1808
Per. Lots 1	0.001041	0.01942	01Jan2000, 12:13	0.0994

Swale design summary

Catchment Area

Fig 2: Catchment Area Coverage

	Swale 2		1	Swale 1			Swale 1		
Swale 2 Flow(L/s	Catchment	Storm	Swale 1 Flow(L/s)	Catchment	Storm				
696.3	Swale 1		616.57	Catchment 1					
145.	I.Road		34.17	Lots 1(P)	100Year				
70.4	P.Road		77.24	Lots 2(P)					
64.0	Lots3(P)	100%	9.71	{-}Lots1(P)	50% of				
62.1	Lots4(P)	100Year	21.94	{-}Lots2(P)	10Year				
63.4	Lots1 (I)								
143.4	Lots2(I)		696.33	Flow L/s					
47.5	{-}I.Road								
2	{-}P.Road								
18.	{-}Lots3(P)	50% of							
17.6	{-}Lots4(P)	10Year							
1	{-}Lots1(I)								
40.74	{-}Lots2(I)								
1082.8	Flow L/s								

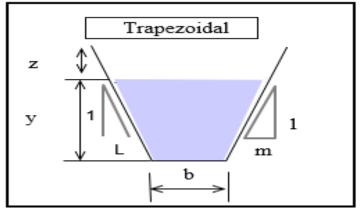
	4 Fred Thomas Drive, Takapuna, Auckland 0622 PO Box 100253, North Shore, Auckland 0745	Project No:	210359	Page	5	of	6
	Tel: 09 489 7872 Email: riley@riley.co.nz	Project:	Kawahai Point Stage 5 – 127 McLarin Road, Glenbrook				
	22 Moorhouse Avenue, Addington, Christchurch 8011 PO Box 4355, Christchurch 8140	Calc:	AR	Date:	04/1	0/202	:1
	Tel: 03 379 4402 Email: rileychch@riley.co.nz	Check:	МК	Date:	28/1	0/202	:1
Description: Over	land Flow Path Calculations						

Fig 3: Catchment Area Plan

Note:

For calculation of runoff from the future development – assume future primary drainage sized for 10 year flow and pipe size >= 600mm dia. – assume 50% blocked (in accordance with Council SWCoP), i.e. deduct 50% of 10 year flow from the calculated 100year flow to determine the secondary overland flowrate - see above

Swale design


- A preliminary design for a Trapezoidal shape swale has been undertaken.
- A manning constant of 0.03 has been assumed for grass (GD01)

		4 Fred Thomas Drive, Takapuna, Auckland 0622 PO Box 100253, North Shore, Auckland 0745	Project No:	210359	Page	6	of	6
		Tel: 09 489 7872 Email: rilev@rilev.co.nz	Project:	Kawahai Point Stage 5 – 127 McLarin Road, Glenbrook				arin
		22 Moorhouse Avenue, Addington, Christchurch 8011 PO Box 4355, Christchurch 8140 Tel: 03 379 4402 Email: rileychch@riley.co.nz	Calc:	AR	Date:	04/10)/202	1
			Check:	МК	Date:	28/10)/202	1
Description: Overland Flow Path Calculations								

Table 2: Proposed swale depths

		Trapezoidal (Base =0.5m)			
Swale Flow(L/s)		s) Channel gradient (%) De			
1	696	1.0	0.32		
2	1083	1.0	0.39		

Resultant swale dimensions:

Freeboard(Z)= 0m Side slope (L, m) = 5m Bed width(b)= 0.5mChannel gradient- Swale 1= 1%, Swale 2= 1% 1 % AEP flow velocity = Swale 1= 1.057 m/s, Swale 2= 1.190 m/s Depth - Swale 1= 0.32m, Swale 2= 0.39m1% AEP flow width - Swale 1 = 3.7m, Swale 2 = 4.4m

APPENDIX D

Correspondence with Auckland Transport Consultant

Luke Gordon

From:	
Sent:	
To:	
Subject:	

Amit Patel <Amit.Patel@ptmconsultants.co.nz> Tuesday, 8 February 2022 12:30 PM Luke Gordon [External] FW: Stage 5a Draft RC - Urban Design & Landscape

CAUTION: This email originated from outside of RILEY. Do not open links or attachments unless you know the content is safe.

Hi Luke Response below (sorry for the delay in getting this to you)

Amit Patel Director / Principal Consultant - **MEngSt (Transp), Bcom, Grad Dip (Mgt), MEngNZ, PRINCE2® Registered Practitioner** Mobile: 021 231 7624 Email: <u>Amit.Patel@ptmconsultants.co.nz</u>

From: James Taylor <james.taylor@awa.kiwi>
Sent: Wednesday, 2 February 2022 8:50 AM
To: Amit Patel <Amit.Patel@ptmconsultants.co.nz>
Cc: Cathy Bebelman (AT) <cathy.bebelman@at.govt.nz>
Subject: RE: Stage 5a Draft RC - Urban Design & Landscape

Hi Amit,

I can only speak to AT's general expectations for the raingardens based on the sketches provided. These devices will of course still subject to the usual EPA review processes.

I don't see any further issues at this stage though.

Cheers, James

From: Amit Patel <<u>Amit.Patel@ptmconsultants.co.nz</u>>
Sent: Tuesday, 1 February 2022 4:27 pm
To: James Taylor <<u>james.taylor@awa.kiwi</u>>
Cc: Cathy Bebelman (AT) <<u>cathy.bebelman@at.govt.nz</u>>
Subject: RE: Stage 5a Draft RC - Urban Design & Landscape

Good Afternoon James

Sorry for the late reply. I can confirm that we will not proceed with the GPT and these will be removed. Can you confirm that this will cover off the requirements.

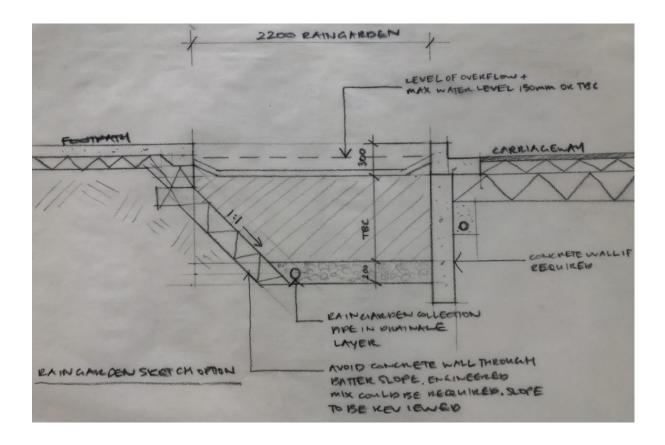
Amit Patel Director / Principal Consultant - **MEngSt (Transp), Bcom, Grad Dip (Mgt), MEngNZ, PRINCE2® Registered Practitioner** Mobile: 021 231 7624 Email: <u>Amit.Patel@ptmconsultants.co.nz</u>

From: James Taylor <james.taylor@awa.kiwi>
Sent: Wednesday, 26 January 2022 8:21 AM
To: Amit Patel <<u>Amit.Patel@ptmconsultants.co.nz</u>>
Cc: Cathy Bebelman (AT) <<u>cathy.bebelman@at.govt.nz</u>>
Subject: RE: Stage 5a Draft RC - Urban Design & Landscape

Hi Amit,

Pre-treatment is not necessary for these raingardens as they are not too large, and the surrounding land-use is unlikely to generate debris or sediment loads that would justify the additional maintenance costs of a pre-treatment GPT. Directly in-letting surface water onto the raingardens in this type of application is appropriate. Suggest you remove the GPT's unless there's a good reason to justify their use here.

Cheers,


JAMES TAYLOR WATER INFRASTRUCTURE ENGINEER a: Level 9 (Biz Dojo), 4 Williamson Ave, Grey Lynn, Auckland 1021 m: +64 27 7388 205 e: james.taylor@awa.kiwi w: www.awa.kiwi

From: Amit Patel <<u>Amit.Patel@ptmconsultants.co.nz</u>>
Sent: Tuesday, 25 January 2022 4:29 pm
To: James Taylor <<u>james.taylor@awa.kiwi</u>>
Cc: Cathy Bebelman (AT) <<u>cathy.bebelman@at.govt.nz</u>>
Subject: RE: Stage 5a Draft RC - Urban Design & Landscape

Good afternoon James and happy new year.

Following on from our conversation the team have worked on the design for the SW. A gross pollutant trap (GPT) will be considered as an additional pre-treatment option (removal of course sediment and debris) before the surface water enters the rain gardens. The GPT may consist of (for example) a simple catchpit-like structure with internal submerged baffle and sump, to collect and retain the sediment. Details will be determined at Engineering Plan Approval (EPA) stage.

Would this be satisfactory to you?

Amit Patel Director / Principal Consultant - **MEngSt (Transp), Bcom, Grad Dip (Mgt), MEngNZ, PRINCE2® Registered Practitioner** Mobile: 021 231 7624 Email: <u>Amit.Patel@ptmconsultants.co.nz</u>

From: James Taylor <james.taylor@awa.kiwi>
Sent: Monday, 20 December 2021 3:27 PM
To: Amit Patel <<u>Amit.Patel@ptmconsultants.co.nz</u>>
Subject: RE: Stage 5a Draft RC - Urban Design & Landscape

Hi Amit,

No problem conceptually looks good, as per our discussion a couple weeks back. Couple of notes though to be considered through the detailed design phase though:

- 2.2m berm width will be relatively tight for the raingardens, is a concrete structure going to be required to support the road, or is there sufficient space for battered slopes? If concrete structures, note that raingardens with larger soil volumes and surface area provide for better plant health. Compartmentalizing the raingardens with concrete support walls can create small cells with many of the issues we have with precast structures stacked end to end. Sufficiently wide berms to provide space for battered slope devices would be preferable.
- The Boffa plans shows some kind of GPT device before discharge into the raingarden. Given the road is relatively low volume residential, is a GPT necessary?
- Trees within raingardens are not typically appropriate, as the raingardens need to be very large to allow for maintenance to occur without damaging the tree.

Kind Regards,

awa

JAMES TAYLOR WATER INFRASTRUCTURE ENGINEER a: Level 9 (Biz Dojo), 4 Williamson Ave, Grey Lynn, Auckland 1021 m: +64 27 7388 205 e: james.taylor@awa.kiwi w: www.awa.kiwi

From: Amit Patel <<u>Amit.Patel@ptmconsultants.co.nz</u>>
Sent: Friday, 17 December 2021 4:00 pm
To: James Taylor <<u>james.taylor@awa.kiwi</u>>
Subject: RE: Stage 5a Draft RC - Urban Design & Landscape

Sorry...James, shows where my mind is...I hit send to early! I was just wondering if the rain garden design is ok. I was keen to wrap this up before Christmas

Amit Patel Director / Principal Consultant - **MEngSt (Transp), Bcom, Grad Dip (Mgt), MEngNZ, PRINCE2® Registered Practitioner** Mobile: 021 231 7624 Email: <u>Amit.Patel@ptmconsultants.co.nz</u>

From: Amit Patel

Sent: Friday, 17 December 2021 3:59 PM To: James Taylor <<u>james.taylor@awa.kiwi</u>> Subject: FW: Stage 5a Draft RC - Urban Design & Landscape

Hi James Sorry for the pre christmas email – I bet you are keen to wind down now!

I have attached the rain garden concept as per our discussion before.

Amit Patel Director / Principal Consultant - **MEngSt (Transp), Bcom, Grad Dip (Mgt), MEngNZ, PRINCE2® Registered Practitioner** Mobile: 021 231 7624 Email: <u>Amit.Patel@ptmconsultants.co.nz</u> From: Bernie Chote <<u>bernie@rangatu.co.nz</u>>
Sent: Friday, 17 December 2021 12:41 PM
To: 'Sagar Kariya' <<u>sagar.kariya@eliga.co.nz</u>>; Amit Patel <<u>Amit.Patel@ptmconsultants.co.nz</u>>
Subject: FW: Stage 5a Draft RC - Urban Design & Landscape

Please confirm the raingarden concepts page 20 are what AT will accept

From: Dave Parker <<u>Dave.Parker@boffamiskell.co.nz</u>>
Sent: Friday, 17 December 2021 12:21 pm
To: Bernie Chote <<u>bernie@rangatu.co.nz</u>>; 'John Duthie (Tattico)' <<u>john.duthie@tattico.co.nz</u>>
Cc: Luke Gordon <<u>lgordon@riley.co.nz</u>>; Morris Kleinjan <<u>mkleinjan@riley.co.nz</u>>; 'Sagar Kariya'
<<u>sagar.kariya@eliga.co.nz</u>>; Ben Clark <<u>Ben.Clark@boffamiskell.co.nz</u>>; Eddie Sides
<<u>Eddie.Sides@boffamiskell.co.nz</u>>
Subject: Stage 5a Draft RC - Urban Design & Landscape

Hi Bernie and John,

Please see attached the draft Stage 5a RC package for urban design and landscape as well as the CAD dwg file. A high resolution version of the document can also be downloaded here: <u>https://boffa-</u> my.sharepoint.com/:b:/g/personal/davep_boffamiskell_co_nz/EbLx7zmTxWIGkiMnDeBVrj8BFcZYcU_rUm3thGicxwe XtQ?e=dOIg0G

As mentioned through the week there are still a few things to resolve such as:

- The stage 5a path connection with stage 4 including temporary footpath until road to stage 6 is completed. This will define the extent of riparian planting works also
- Updated counties lot boundary and compensation planting areas to be updated once CAD is available
- Kerb and footpath alignment to be updated where stage 5a meets stage 4

Bernie, we have kept the mention of nature play in the community space as a high level comment with the intent of developing this further following RC.

Once we've received comments over the Christmas break, we can make any updates in January. Please note I'm not back in the office until 17th Jan but Ben will be back on the 13th.

Regards

Dave Parker | Landscape Architect | Associate Principal | Registered NZILA Landscape Architect

E: dave.parker@boffamiskell.co.nz | D: +64 9 359 5319 | M: +64 27 306 6506 | LEVEL 3 | 82 WYNDHAM STREET | AUCKLAND 1010 | NEW ZEALAND

This electronic message together with any attachments is confidential. If you receive it in error: (i) you must not use, disclose, copy or retain it; (ii) please contact the sender immediately by reply email and then delete the emails. Views expressed in this email may not be those of Boffa Miskell Limited. **Electronic Data.** By accepting or using electronic data files provided by Boffa Miskell Limited, you acknowledge and agree that (i) The purpose for which the files were prepared may differ from the purpose that you intend to use the files, and Boffa Miskell makes no representation that the files are suitable for your intended use; (ii) Boffa Miskell gives no representation as to the accuracy, completeness or correctness of the information in the files. You acknowledge that it is your responsibility to confirm all measurements and data in the files; (iii) The provision of the files does not transfer any copyright or other intellectual property rights in the files or any information contained therein. All references to Boffa Miskell shall be removed if any information in the files is copied or altered in any way; and (iv) To the full extent permitted by law, Boffa Miskell accepts and shall have no liability whatsoever (including in negligence) for any loss, damage or liability arising from the receipt or use of the files. This e-mail message has been scanned for Viruses and Content.

APPENDIX E

Watercare Planning Assessment Forms

Development Application Form – Water Supply/Wastewater Planning Assessment						
Date of Application	02/02/2021	02/02/2021				
Address of Development	127 McLarin Road, G	enbrook				
 Layout Plan of Proposed Development clearly showing: Aerial photograph Road names Boundary of development Preferred point of connection to existing water supply and wastewater asset 	Refer attached drawings					
	Description	Comment				
Current Land Use	Unoccupied (Greenfield)					
Proposed Land Use	Residential and commercial					
Total Development Area (Ha.)	4ha					
Number of Residential Households (Consent & Ultimate)	Up to 51 residential lots/households, plus 1 superlot, plus 2 commercial lots					

Refer to Water and Wastewater Code of Practice for Land Development and Subdivision Section 6 Water Supply

Water Supply Development Assessment						
Average and Peak Residential Demand (L/s)	Avg=0.40 L/s Peak=2 L/s	Including 1x superlot (assumed to be equivalent of 1 household). 2201/p/d, 3 persons per lot. Peaking factor of 5 applied.				
Average and Peak Non- Residential Demand (L/s)	Avg=0.04 L/s Peak=0.2 L/s	Assumed GFA of 200 sqm per commercial lot - assume majority is dry retail/office where toilets are provided to customer (WSL CoP Table 6.1.b – 1 person per 15m floor area and 65L/p/day), with say 50m wet retail per lot (15L/day/m ²) Peaking factor of 5 applied.				
Non Residential Demand Typical Daily Consumption Profile/Trend		e.g., 24 hr operation/10 hr (9am - 5pm)/Filling on-site storage at certain frequency)				
Fire- fighting Classification required by the proposed site	FW2	<i>Refer to New Zealand Standard SNZ PAS 4509:2008</i>				
Hydrant Flow Test Results	□ Yes 🛛 No	Attach hydrant flow test layout plan and results showing test date and time; location of hydrants tested, and pressure logged; static pressure; flow; residual pressure				
Sprinkler System in building?	□ Yes □ No	unknown				
Further Water Supply comments						

Refer to Water and Wastewater Code of Practice for Land Development and Subdivision Section 5 Wastewater

Wastewater Development Assessment							
Peak DWF and WWF Residential Design Flows (L/s)	DWF= 0.99 L/s	Including 1x superlot (assumed to be equivalent of 1 household). Based on 180/l/p/d and 3 persons per lot. Peaking factor of 3 applied. WWF not applicable – pressure system Assumed GFA of 200 sqm per commercial lot - assume majority is dry retail/office where toilets are provided to customers (WSL CoP Table 5.1.3 – 1 person per 15m ² floor area and 65L/p/day), with say 75m2 wet retail per lot (15 L/day/m ²) Peaking factor of 3 applied. WWF not applicable – pressure system					
Peak DWF and WWF Non- Residential Design Flows (L/s)	DWF= 0.12 L/s						
Non-Residential Discharge Profile / Trend (i.e., Operations)		e.g., 24 hr operation / 10 hr (9am – 5pm) /Other					
New Assets Required for Development	DN50mm and DN75mm pressure pipes	Refer RILEY Dwg 210359-364					
Sewer Capacity Check		Refer GHD capacity Report - attached					
Further Wastewater comments							

For internal Watercare use only

Date Application Received	
Application Ref No.	
Assigned Connections Engineer	
Prior Developer Correspondence with Watercare	
Neighbouring developments to consider in capacity assessment	

APPENDIX F

RILEY Dwgs: 210359-350 to -374 (23No.)

KAHAWAI POINT DEVELOPMENTS LIMITED KAHAWAI POINT, GLENBROOK KAHAWAI POINT - STAGE 5 **RESOURCE CONSENT DRAWINGS - FEBRUARY 2022**

DRAWING NO.	DRAWING TITLE		REV
210359-350	DRAWING LIST AND LOCALITY PLAN		2
210359-351	210359-351 EXISTING SITE PLAN		2
210359-352	OVERALL PROPOSED ENGINEERING PLAN		2
210359-353	SUPERLOT 3 LAYOUT		1
210359-355	ROAD LONG SECTION		1
210359-356	JOAL LONG SECTIONS		1
210359-357	ROAD TYPICAL CROSS SECTION		1
210359-358	JOAL TYPICAL CROSS SECTION		1
210359-360	STORMWATER LAYOUT		2
210359-361	STORMWATER CATCHMENT AND OVERLAND FLOWPATH PLAN		2
210359-362	STORMWATER OUTFALL TYPICAL DETAILS		1
210359-363	RAIN GARDEN PRELIMINARY DETAILS AND SIZES		1
210359-364	LOW PRESSURE SEWER LAYOUT		2
210359-365	WATER SUPPLY LAYOUT		2
210359-366	STANDARD DETAILS- SHEET 1		1
210359-367	STANDARD DETAILS- SHEET 2		1
210359-368	STANDARD DETAILS- SHEET 3		1
210359-369	STANDARD DETAILS- SHEET 4		1
210359-370	STANDARD DETAILS- SHEET 5		1
210359-371	STANDARD DETAILS- SHEET 6		1
210359-372	STANDARD DETAILS- SHEET 7		1
210359-373	STANDARD DETAILS- SHEET 8		1
210359-374	STANDARD DETAILS- SHEET 9		1

GENERAL NOTES:

- 1. ALL WORKS TO BE UNDERTAKEN IN ACCORDANCE WITH THE DRAWINGS & SPECIFICATIONS AND APPROVALS (RESOURCE CONSENT, BUILDING CONSENT AND ENGINEERING APPROVALS).
- THE CONTRACTOR IS RESPONSIBLE FOR ENSURING THE LATEST REVISION DRAWINGS ARE ON SITE.
 ALL DRAWINGS AND SPECIFICATIONS TO BE READ IN CONJUNCTION WITH OTHER PROJECT SPECIALISTS
- DOCUMENTATION.
- 4. ALL EARTHWORKS, INCLUDING TRENCHING FOR SERVICES, ARE TO BE FULLY SUPPORTED. 5. DO NOT SCALE OR DIMENSION FROM THESE DRAWINGS.
- 6. TOPOGRAPHICAL SURVEY INFORMATION SOURCED FROM DRONE SURVEYS UNDERTAKEN BY SURVEY WORX AND BM SURVEYS (MOST RECENTLY OCTOBER 2021), GULLY CONTOURS SOURCED FROM AUCKLAND COUNCIL GEOMAPS.
- 7. LEVELS ARE IN TERMS OF LINZ AUCKLAND VERTICAL DATUM 1946. CO-ORDINATES ARE IN TERMS OF MT EDEN 2000.
- 8. ALL WORK & MATERIALS TO BE IN ACCORDANCE WITH COUNCIL STANDARDS & SPECIFICATIONS. 9. THE CONTRACTOR IS TO LOCATE & PROTECT ALL EXISTING SERVICES, INCLUDING POWER, TELECOM, GAS, WATER, STORMWATER & WASTEWATER BEFORE COMMENCING WORKS. LIAISE WITH RESPECTIVE SERVICE
- AUTHORITIES FOR ASSISTANCE. 10. ANY DISCREPANCIES BETWEEN THE DRAWINGS & SITE CONDITIONS ARE TO BE NOTIFIED TO THE ENGINEER IMMEDIATELY.
- 11. ALL NEW PIPEWORK SHALL BE PROTECTED AGAINST DAMAGE DURING CONSTRUCTION. 12. ALL WORKS TO BE SET OUT ON SITE PRIOR TO CONSTRUCTION. ANY DISCREPANCIES ARE TO BE REPORTED TO THE ENGINEER PRIOR TO COMMENCEMENT.
- 13. CONTRACTOR TO GIVE NOTICE TO THE ENGINEER PRIOR TO BACKFILLING ANY WORK. 14. THE CONTRACTOR MUST BE SATISFIED THAT THE WORKS HAVE BEEN COMPLETED IN ACCORDANCE WITH THE DRAWINGS AND SPECIFICATION PRIOR TO REQUESTING AN INSPECTION.
- 15. IT IS THE CONTRACTOR'S RESPONSIBILITY TO LIAISE WITH THE ENGINEER TO SATISFY THEMSELVES THEY
- CLEARLY UNDERSTAND WHEN ALL INSPECTIONS ARE REQUIRED. 16. ALL WORKS SHALL COMPLY WITH THE HEALTH & SAFETY PLAN SUBMITTED BY THE CONTRACTOR.

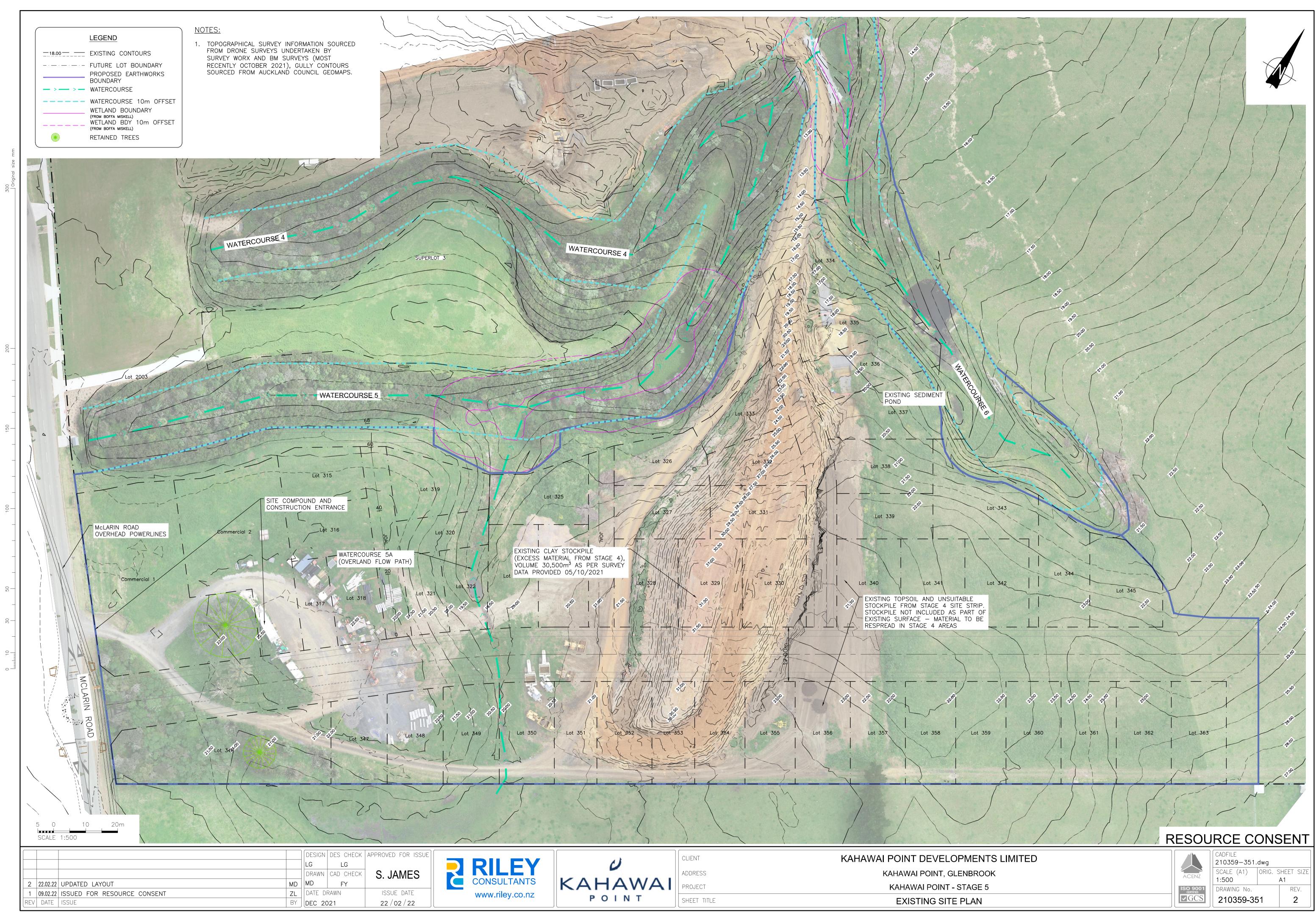
SEDIMENT CONTROL NOTES:

- 1. EARTHWORKS AND SEDIMENT CONTROL REPORT DRAWINGS TO BE READ IN CONJUNCTION WITH RILEY REPORT REF: 210359-B.
- 2. ALL E&SC MEASURES ARE TO BE IN ACCORDANCE WITH THE EROSION AND SEDIMENT CONTROL GUIDE FOR LAND DISTURBANCE ACTIVITIES IN THE AUCKLAND REGION (GD05).
- 3. THE CONTRACTOR (AND THEIR SUB-CONTRACTORS) SHALL BE RESPONSIBLE FOR PROVIDING ADEQUATE SEDIMENT AND EROSION CONTROL MEASURES TO PROTECT DOWNSTREAM ENVIRONMENTS FROM EXCESSIVE SEDIMENTATION AND WATER QUALITY DEGRADATION. THE CONTRACTOR SHALL PREPARE SEDIMENT CONTROL LAYOUT PLANS ACCORDING WITH THE E&SCP AND PROVIDE COPIES TO THE SITE ENGINEER AND COUNCIL REPRESENTATIVE FOR APPROVAL PRIOR TO COMMENCING ANY EARTHWORKS ACTIVITIES.
- CONTRACTOR WILL BE REQUIRED TO LIAISE WITH COUNCIL REPRESENTATIVE 4. PRIOR TO AND DURING CONSTRUCTION TO ENSURE SEDIMENT CONTROL MEASURES ARE SUFFICIENT.
- 5. EROSION AND SEDIMENT CONTROL MEASURES SHALL BE CONSTRUCTED BEFORE COMMENCING ANY EARTHWORKS.

				DESIGN	DES CHECK	APPROVED FOR ISSUE	
				LG	LG		RI
				DRAWN	CAD CHECK	S. JAMES	
2	22.02.22	REVISED ISSUE FOR RESOURCE CONSENT	MD	MD	FY		CONS
1	09.02.22	ISSUED FOR RESOURCE CONSENT	ZL	DATE D	RAWN	ISSUE DATE	www.
REV	DATE	ISSUE	BY	DEC 20	021	22 / 02 / 22	

0-

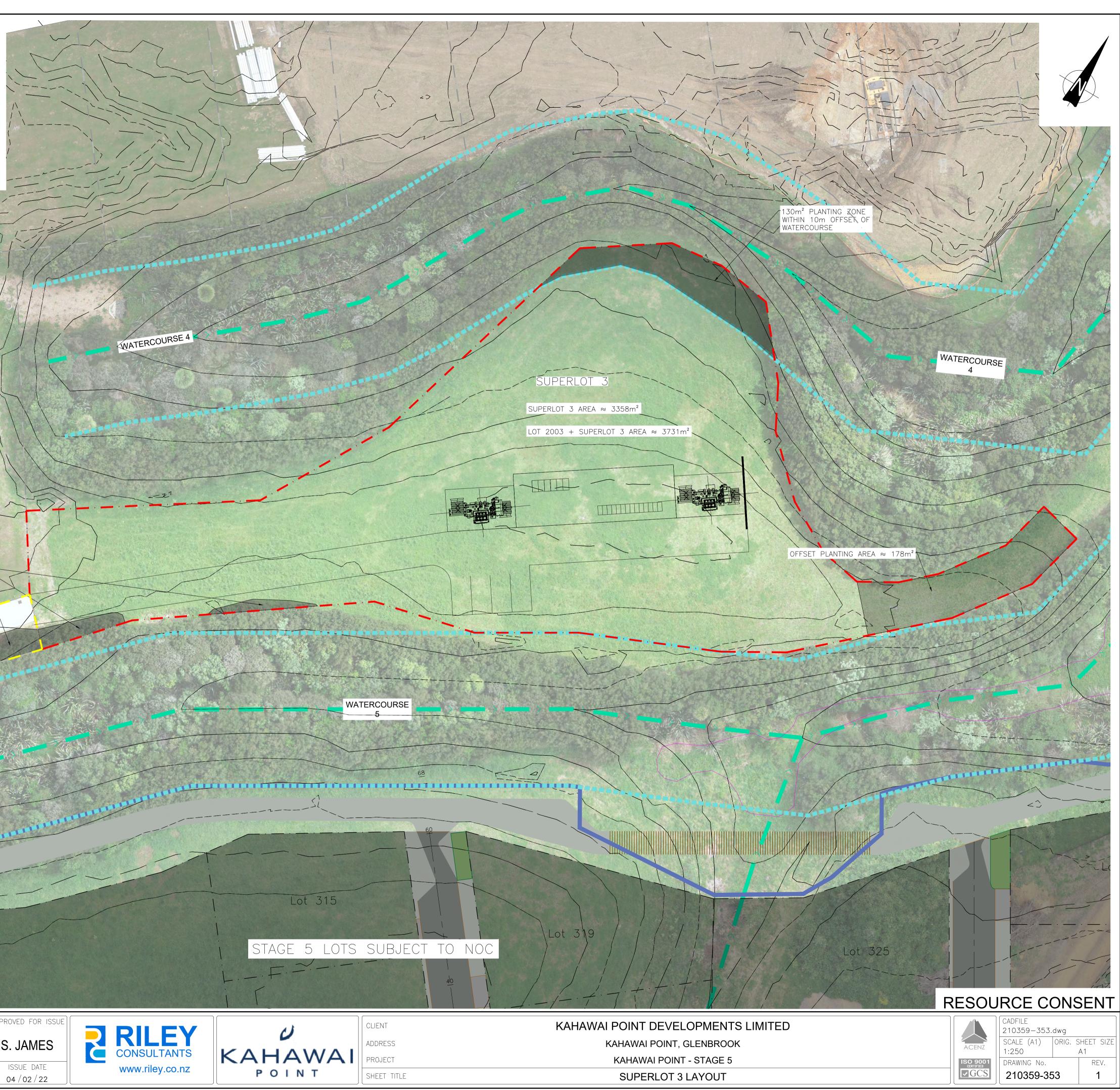
STAGE LOCATION SCALE: NTS


> CLIENT U ADDRESS KAHAWAI PROJECT POINT SHEET TITLE

KAHAWAI POINT DEVELOPMENTS LIMITED KAHAWAI POINT, GLENBROOK KAHAWAI POINT - STAGE 5 DRAWING LIST AND LOCALITY PLAN

NOTE: AERIAL IMAGE SOURCED FROM LINZ

RESOURCE CONSENT


	CADFILE 210359-350.dwg				
ACENZ	SCALE (A1) N.T.S.	.	SHEET SIZE A1		
ISO 9001	DRAWING No.	REV.			
GCS	210359-350		2		

LEGEND

- FUTURE LOT BOUNDARY PROPOSED EARTHWORKS
- BOUNDARY
 - WATERCOURSE 10m OFFSET
 - WETLAND BOUNDARY (from boffa miskell)
- NOTES:
- 1. TOPOGRAPHICAL SURVEY INFORMATION SOURCED FROM DRONE SURVEYS UNDERTAKEN BY SURVEY WORX AND BM SURVEYS (MOST RECENTLY OCTOBER 2021), GULLY CONTOURS SOURCED FROM AUCKLAND COUNCIL GEOMAPS.

	Total 2003 AREA R 373m ²			
2.5 0 5 10m SCALE 1:250	INT	DESIGN DES (MK LC DRAWN CAD (ZL F DATE DRAWN JAN 2022	CHECK S. JAMES	Riconsul www.rile

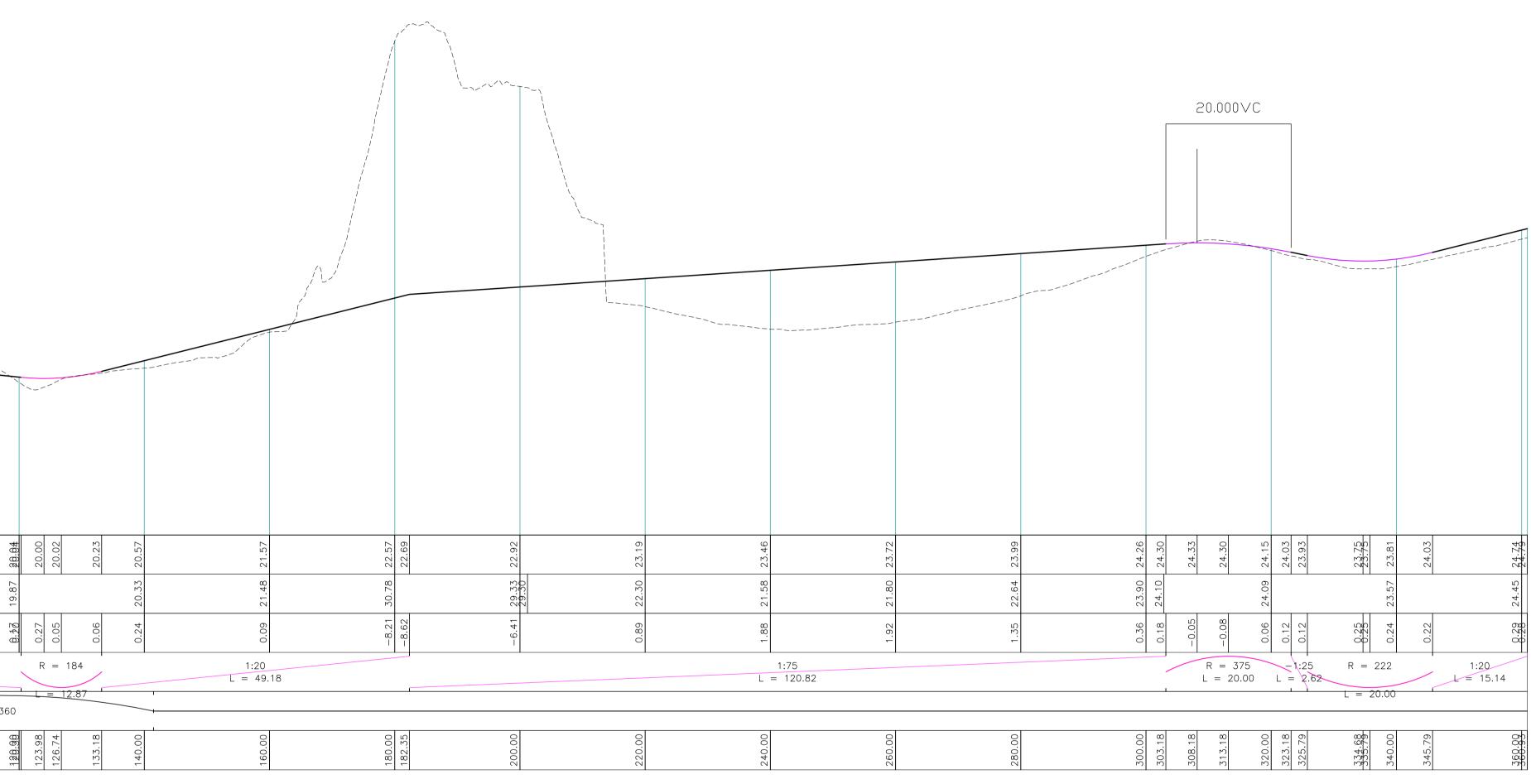
					/		
DESIGN SURFACE LEVELS	22.18	22.04	21.64	21.24	20.84		
EXISTING SURFACE LEVELS		21.63	21.66	22.54	2.56 22.56		P :
CUT - / FILL + 00	0.45	0.42	-0.01	-1.30	-1.72	- 1.55	
VERTICAL GEOMETRY	1:50 L = 13.08				-1:50 L = 107.22		
HORIZONTAL GEOMETRY							R=36
CHAINAGE 0	13.08	20.00	40.00	60.00	80.00	100.00	

LONG SECTION - ROAD 1

HORIZONTAL SCALE 1:500 VERTICAL SCALE 1:100

1 0 2 4m SCALE 1:100

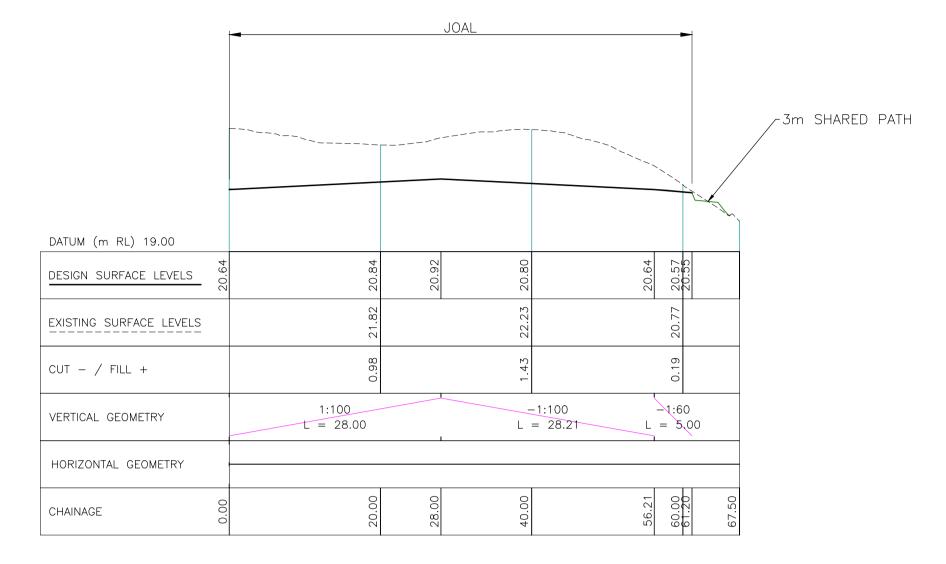
5 0 10 20m Scale 1:500

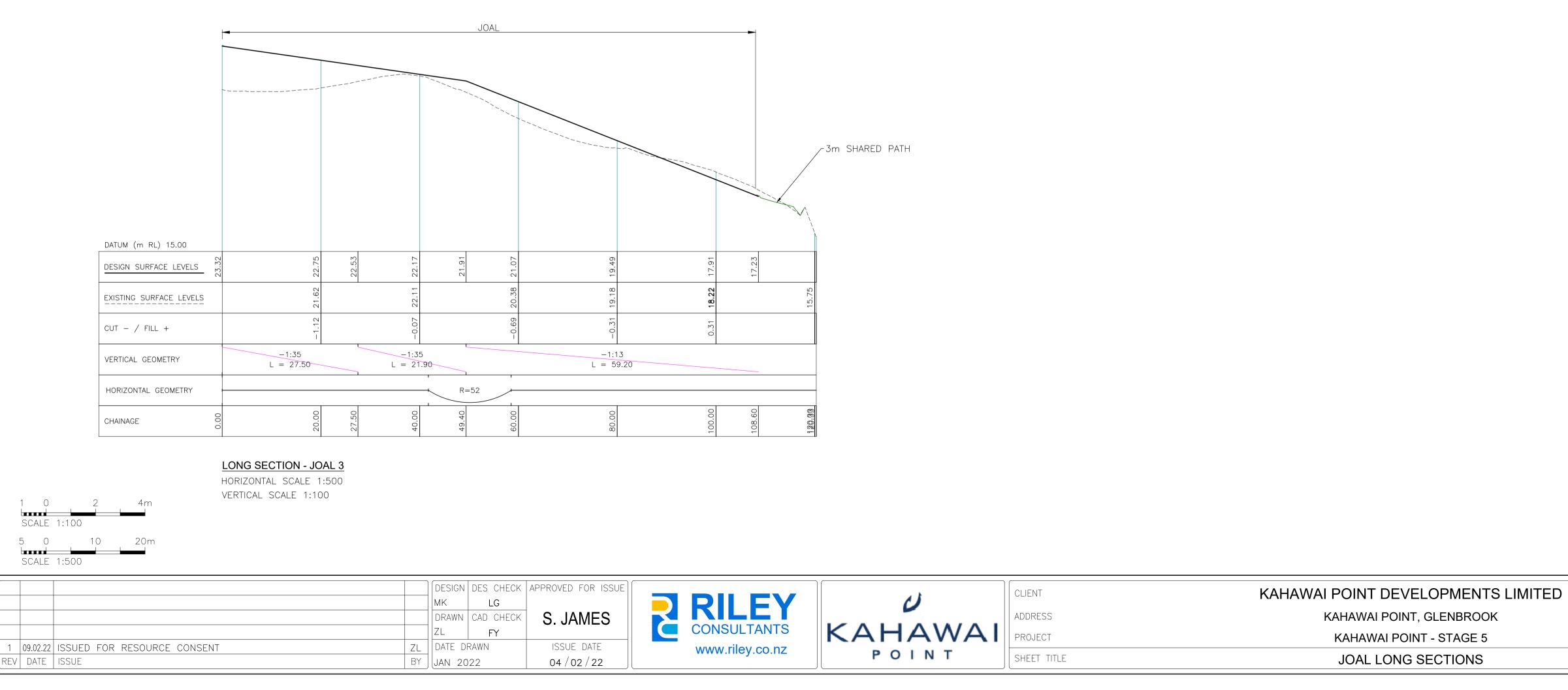

			DESIGN	DES CHECK	APPROVED FOR ISSUE	
			МК	LG		
			DRAWN	CAD CHECK	S. JAMES	
			ZL	FY		CONSI
1	09.02.22 ISSUED FOR RESOURCE CONSENT	ZL	DATE DI	RAWN	ISSUE DATE	www.r
REV	DATE ISSUE	BY	JAN 20	22	04 / 02 / 22	

30

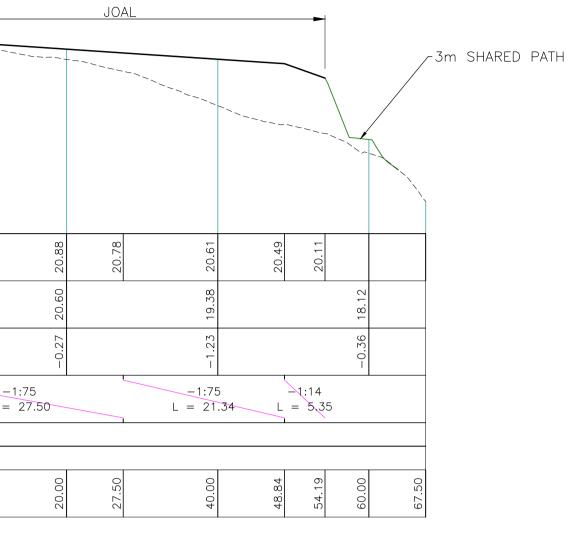
0 10 |...1...|

200


300 ______

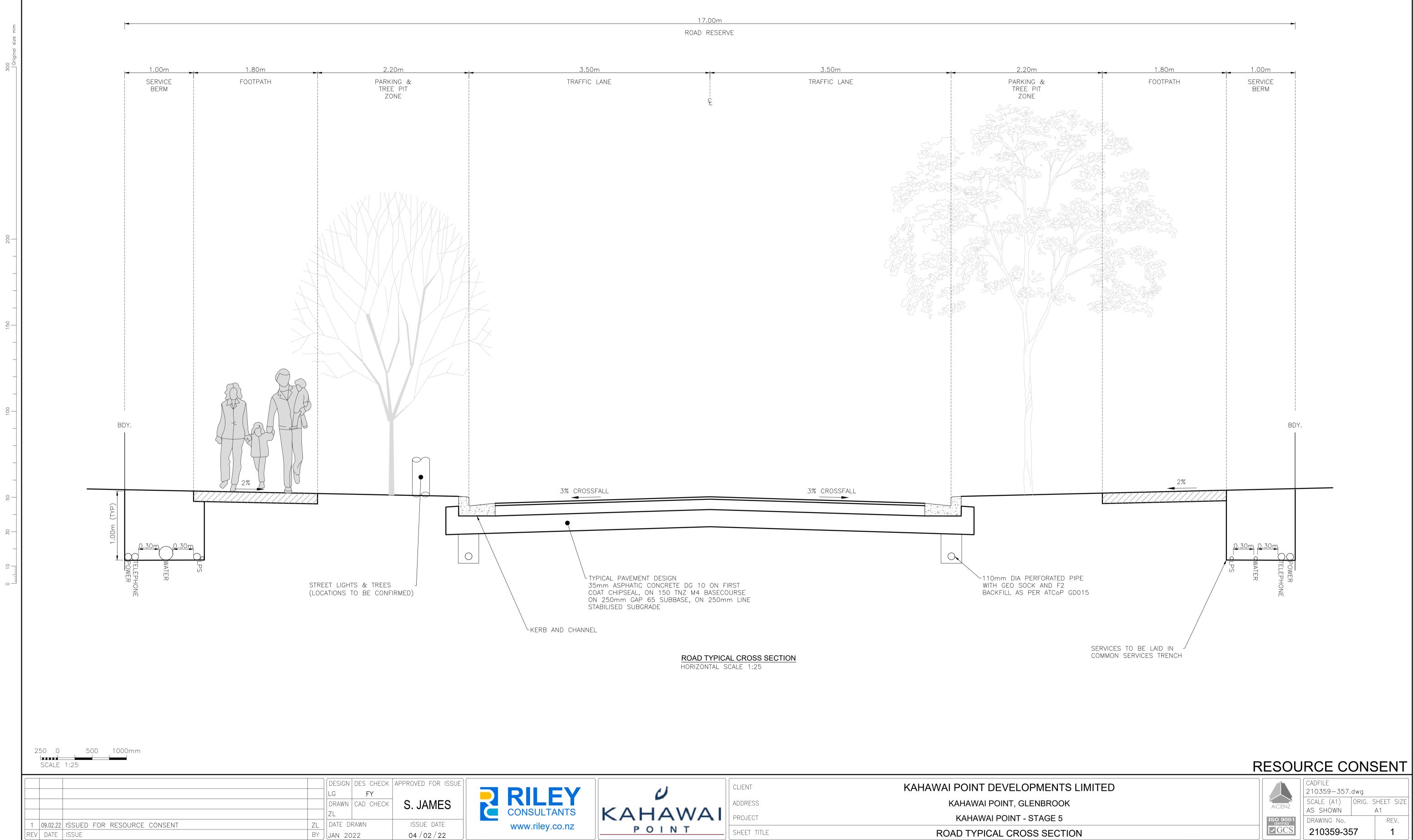

CLIENT U ADDRESS KAHAWAI PROJECT ΡΟΙΝΤ SHEET TITLE KAHAWAI POINT DEVELOPMENTS LIMITED KAHAWAI POINT, GLENBROOK KAHAWAI POINT - STAGE 5 ROAD LONG SECTION

	CADFILE				
	210359-355.dwg				
	SCALE (A1)	ORIG.	SHEET	SIZE	
ACENZ	AS SHOWN		A1		
ISO 9001	DRAWING No.		RE	EV.	
GCS	210359-35		1		


LONG SECTION - JOAL 1

HORIZONTAL SCALE 1:500 VERTICAL SCALE 1:100

DATUM (m RL) 16.00		
DESIGN SURFACE LEVELS	21.14	
EXISTING SURFACE LEVELS		
CUT - / FILL +		
VERTICAL GEOMETRY		1/ =
HORIZONTAL GEOMETRY		
CHAINAGE	0.00	


LONG SECTION - JOAL 2 HORIZONTAL SCALE 1:500 VERTICAL SCALE 1:100

RESOURCE CONSENT

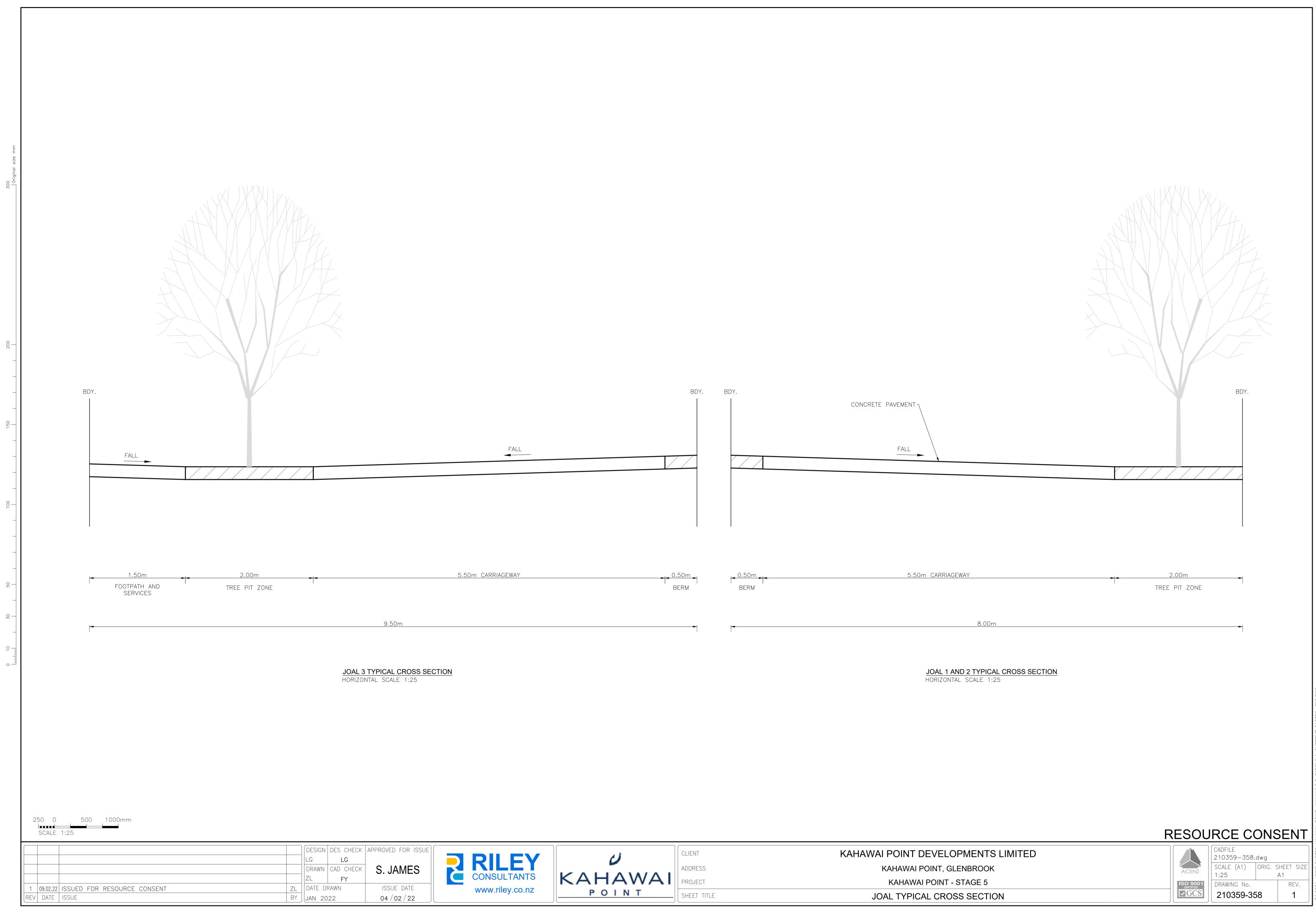
ACENZ ISO 9001 CERTIFIED

CADFILE					
210359-356.dwg					
SCALE (A1)	ORIG.	SHEET	SIZE		
AS SHOWN		A1			
DRAWING No.	R	EV.			
210359-356			1		

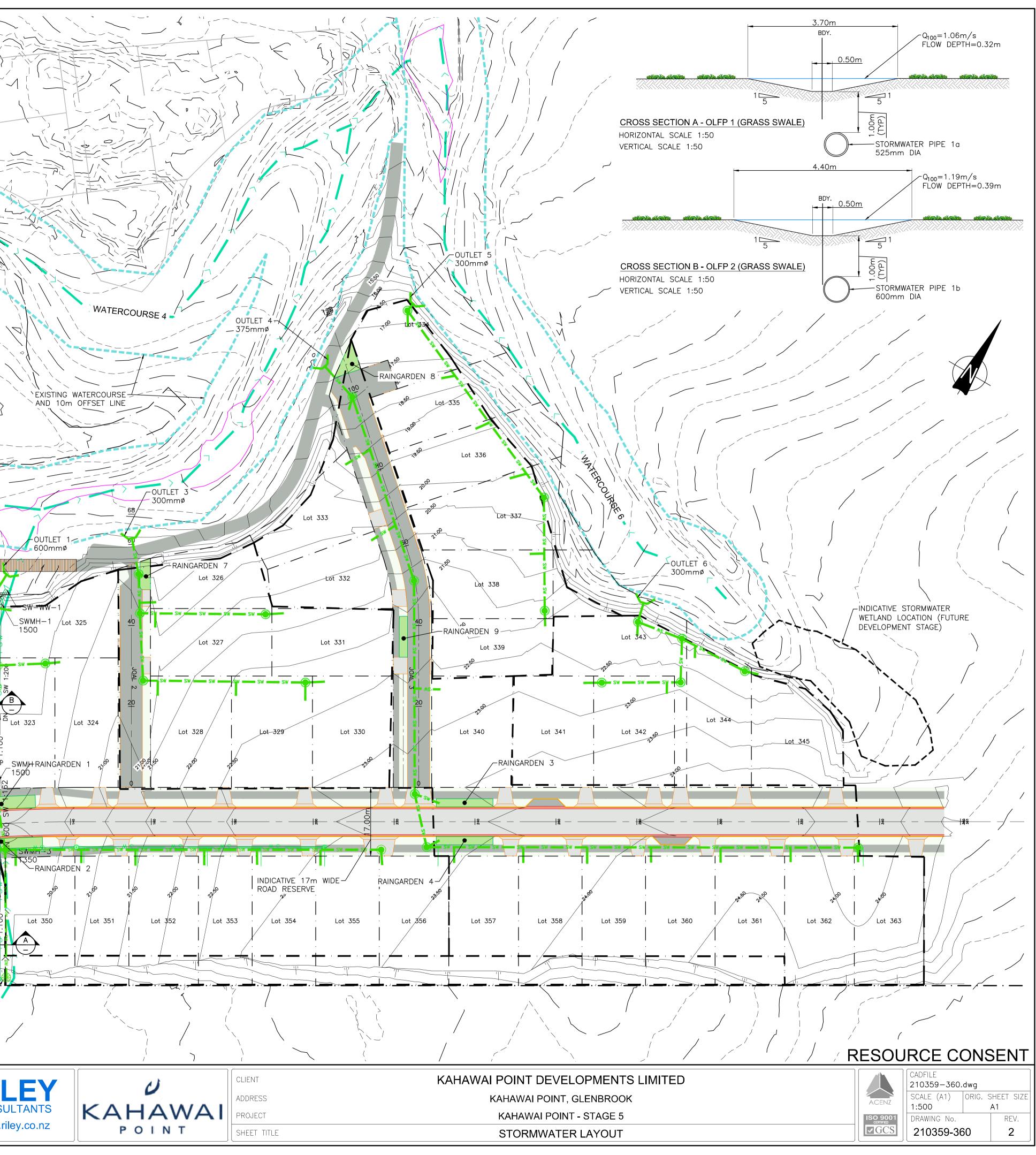
300 | Or

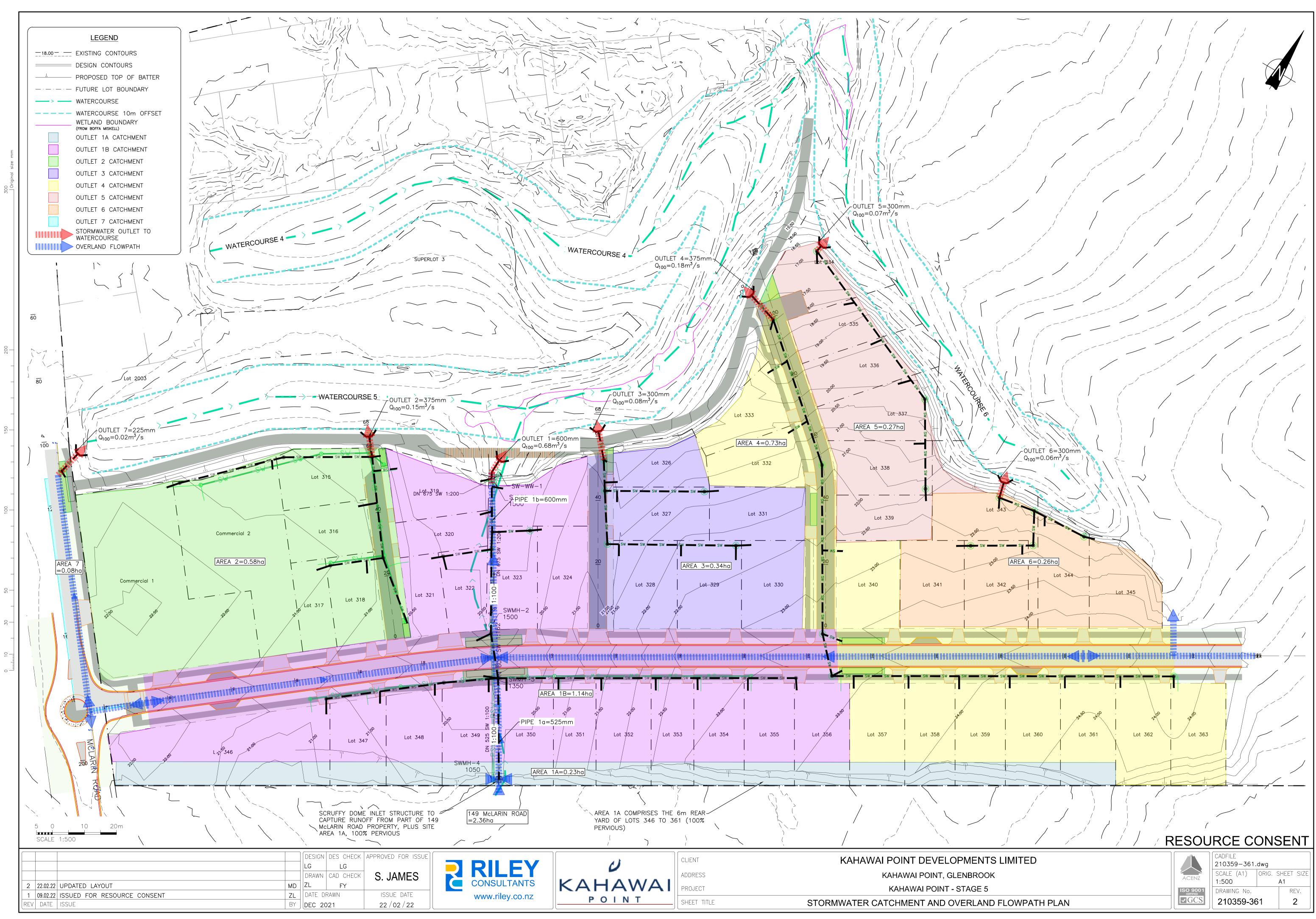
100

REV DATE ISSUE


04 / 02 / 22

ΡΟΙΝΤ SHEET TITLE ROAD TYPICAL CROSS SECTION


A1

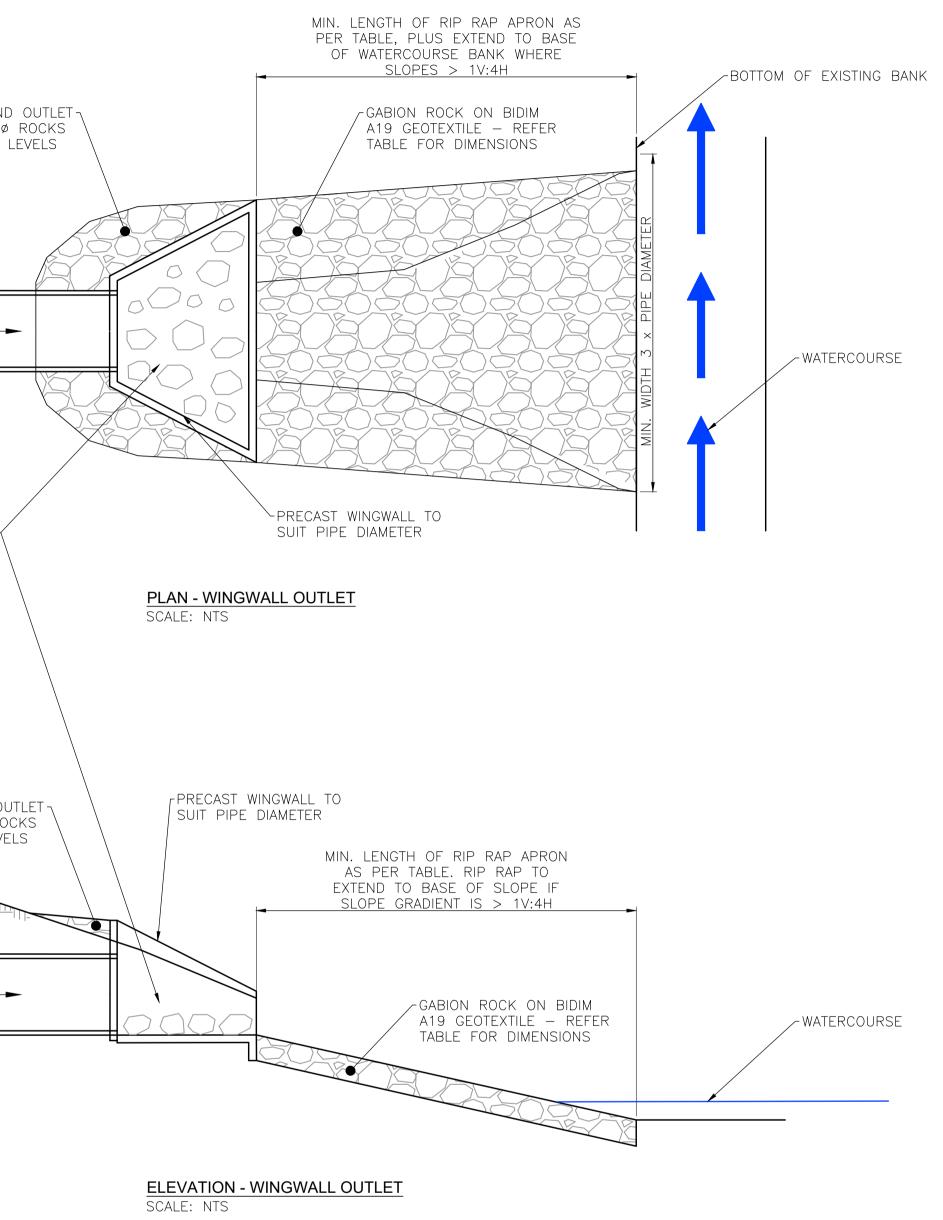

REV.

1

	LEGEND			/~/~/	
	DESIGN CONTOURS				
			11		
		15	// !		
	———— WATERCOURSE 10m OFFSET		,- ^j / ;		
	WETLAND BOUNDARY (from boffa miskell) sw INDICATIVE STORMWATER NETWORK				
ш Ш	STORMWATER OUTLET WINGWALL AND RIP-RAP APRON				
l size n					
300 Original size	RAINGARDEN				
M	RETAINED TREES				
		WATERCOURSE			
		WATE:		SUPERLO	T 3
					/
	60				
					~ _ }
200				<	
_		FLANIED BATTER_EACH	SIDE		
_	80 Lot 2003				
_		×		SE 5OUTLET 2 375mmø	
_		/		38	
150	100 100				
_			s₩ sw sw sw		
_		SW SW .	Lot 315	RAISED BOARDWALK	
_			RAINGARDEN 5-	- OVERLAND F	
100	RAINGARDEN 10			OUTFALL: D GABION ROO (400mm TH	CK APRON
_		Commercial 2	Lot 316	CLASS C GI	LOTÉXTILE
_			SW 1	24	
- 20	Commercial 1		EXISTING FLOWPATH TO BE DIVERTED AS SHOW (1:100 LONGITUDINAL	VN Lot 321	Lot 322
_	22.50 22.50	22:00	GRADIENT)	1×80	
30			RAINGARDEN	6	
_	17€				
0 10 				<u>18</u> –	
0 —					
	ARIN	-1-	O C THE AS	Als Als	
		+		\	2
	ROAD		かり Lot 34	00 . 1 ↓ Lot 348	. <u>مر</u> <u>در مر</u> <u>در مر</u> <u>در مر</u> <u>در مر</u> <u>در مر</u> <u>در مر</u> <u>در مر</u> <u>در مر</u> <u>در مر</u>
	2280	Let 346			
			1-2	SCRUFFY	DOMÉ INLET
I	5 0 10 20m				~ ~ ~ /
	SCALE 1:500	\mathbf{i}	、		
	SCALE 1:500	Υ.	DESIGN DES CHECK	APPROVED FOR ISSUE	
	SCALE 1:500	\ 	DESIGN DES CHECK		
	SCALE 1:500		LG LG	APPROVED FOR ISSUE	CONSUL
	2 22.02.22 UPDATED LAYOUT		LGLGDRAWNCADMDZLFY	S. JAMES	

				RIP RAP APRON AS	
			OF WATERCOUR	S EXTEND TO BASE SE BANK WHERE > 1V:4H	
	BACKFILL LOCALLY AR STRUCTURE WITH 150 TO MATCH SURROUND	mmø ROCKS \	A19 GEOTE	OCK ON BIDIM EXTILE – REFER R DIMENSIONS	
	TO MATCH SURROUND		TABLE FOR		
	F~				
OUTLET	PIPE DIAMETER – REFER TABLE –				T
					WATERCOURSE
	1% SLO	PE			
			<u>JEOEOE</u>		
			PRECAST WINGWALL TO		
150-2 EPOXII	50 GABION ROCK RIP R Ed to wingwall base		SUIT PIPE DIAMETER	I	
			WINGWALL OUTLET		
		SCALE:			
B/ S ⁻	ACKFILL LOCALLY AROUN IRUCTURE WITH 150mms		CAST WINGWALL TO F PIPE DIAMETER		
тс	D MATCH SURROUNDING	LEVELS	MIN. LENGTH OF	- RIP RAP APRON E. RIP RAP TO	
			EXTEND TO BAS	E. RIP RAP TO SE OF SLOPE IF INT IS > 1V:4H	
F`	F`				
	PIPE DIAMETER				
	– REFER TABLE –	$ \longrightarrow $			
	- REFER TABLE		A19	BION ROCK ON BIDIM 9 GEOTEXTILE - REFER BLE FOR DIMENSIONS	WATERCOURSE
	- REFER TABLE		A19	9 GEOTEXTILE – REFER	WATERCOURSE
	U_~		A19 TAE	9 GEOTEXTILE - REFER BLE FOR DIMENSIONS	WATERCOURSE
<u></u>	U_~		A19 TAE	9 GEOTEXTILE – REFER	WATERCOURSE
	U_~		TION - WINGWALL OUTLET	9 GEOTEXTILE - REFER BLE FOR DIMENSIONS	WATERCOURSE
	U_~	ELEVA	TION - WINGWALL OUTLET	9 GEOTEXTILE - REFER BLE FOR DIMENSIONS	WATERCOURSE
	U_~	ELEVA	TION - WINGWALL OUTLET	9 GEOTEXTILE - REFER BLE FOR DIMENSIONS	WATERCOURSE
	<u>1% SLO</u>	ELEVA SCALE:	TION - WINGWALL OUTLET	9 GEOTEXTILE - REFER BLE FOR DIMENSIONS	WATERCOURSE
		ELEVA SCALE:	TION - WINGWALL OUTLET NTS	9 GEOTEXTILE – REFER BLE FOR DIMENSIONS	
STORMWATER OUTLET 1	1% SLO	ELEVA SCALE:	TION - WINGWALL OUTLET NTS	9 GEOTEXTILE – REFER BLE FOR DIMENSIONS	WATERCOURSE
	1% SLO	ELEVA SCALE: MINARY DESIGN: MIN. APRON LENGTH (m)	TION - WINGWALL OUTLET NTS MIN. APRON WIDTH (m)	GABION ROCK DIA. (mm)	ROCK LAYER THICKNESS (mm)
OUTLET 1	1% SLO 1% SLO ROUTLET PRELIN PIPE DIA. (mm) 600	ELEVA SCALE: MINARY DESIGN: MIN. APRON LENGTH (m) 6.07	TION - WINGWALL OUTLET NTS MIN. APRON WIDTH (m) 1.80	GABION ROCK DIA. (mm) 150	ROCK LAYER THICKNESS (mm) 300
OUTLET 1 2	1% SLO 1% SLO Non- 1% SLO Non- 1% SLO Non- 1% SLO 100 SLO 1% SLO	ELEVA SCALE: MINARY DESIGN: MIN. APRON LENGTH (m) 6.07 5.41 2.77 3.88	MIN. APRON WIDTH (m) 1.80 1.13 0.90 1.13	GABION ROCK DIA. (mm) 150 150 150 150	ROCK LAYER THICKNESS (mm) 300 300 300 300
OUTLET 1 2 3	1% SLO 1% SLO 1% SLO Non- 1% SLO 100 SLO 1% SLO 1% SLO<	ELEVA SCALE: NINARY DESIGN: MIN. APRON LENGTH (m) 6.07 5.41 2.77 3.88 2.97	MIN. APRON WIDTH (m) 1.80 1.13 0.90 1.13 0.90	GEOTEXTILE – REFER BLE FOR DIMENSIONS GABION ROCK DIA. (mm) 150 150 150 150 150 150 150 150 150 150 150 150 150	ROCK LAYER THICKNESS (mm) 300 300 300 300 300
OUTLET 1 2 3 4	1% SLO 1% SLO Non- 1% SLO Non- 1% SLO Non- 1% SLO 100 SLO 1% SLO	ELEVA SCALE: MINARY DESIGN: MIN. APRON LENGTH (m) 6.07 5.41 2.77 3.88	MIN. APRON WIDTH (m) 1.80 1.13 0.90 1.13	GABION ROCK DIA. (mm) 150 150 150 150	ROCK LAYER THICKNESS (mm) 300 300 300 300 300 300 300

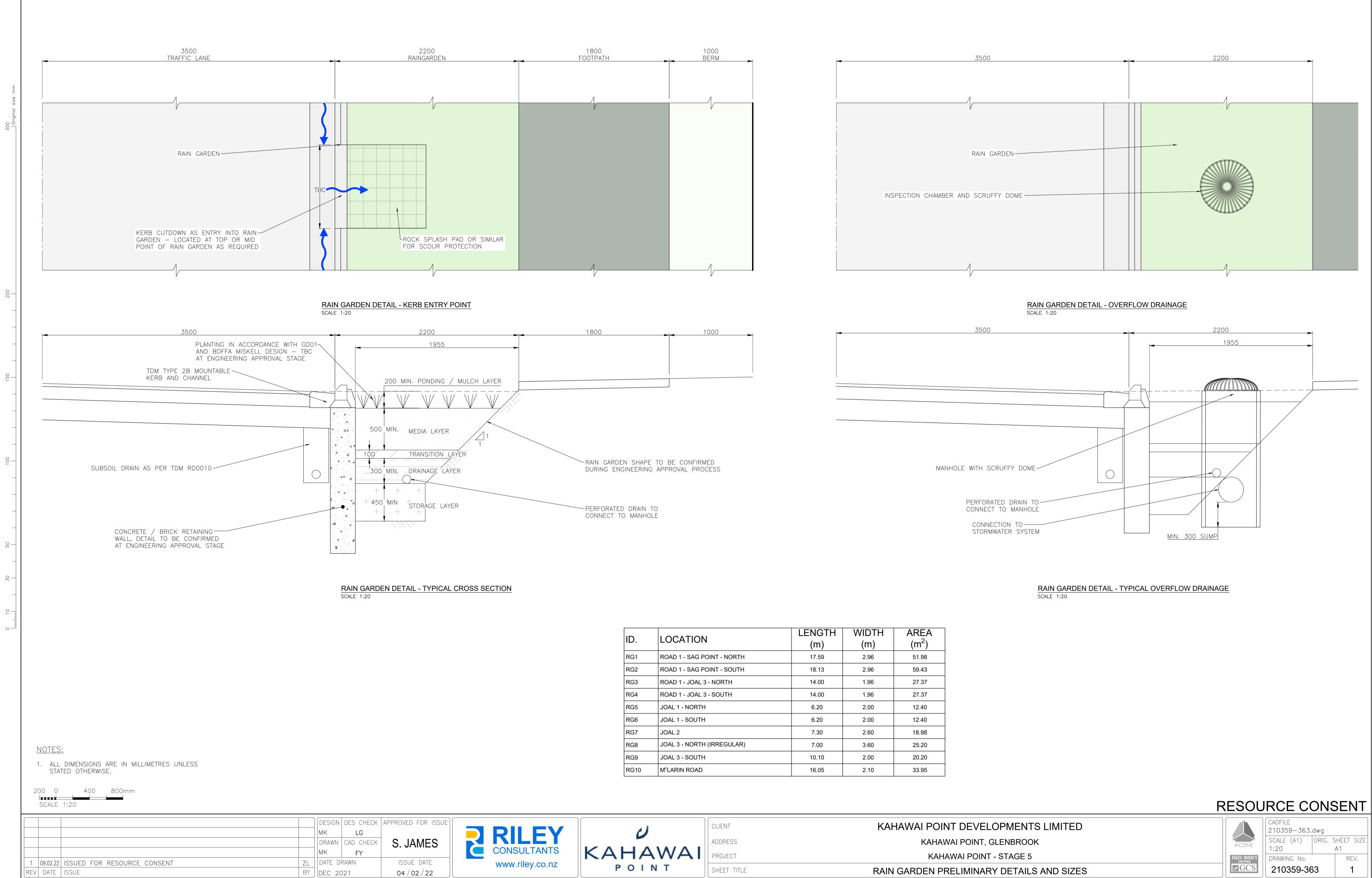
				DESIGN MK DRAWN ZL	LG	APPROVED FOR ISSUE	2	
1 REV	09.02.22 Date	ISSUED FOR RESOURCE CONSENT ISSUE	ZL BY	DATE DI DEC 20		ISSUE DATE 04 / 02 / 22		WWW.I


150

100

30

0 10 |....|...|



KAHAWAI POINT DEVELOPMENTS LIMITED KAHAWAI POINT, GLENBROOK KAHAWAI POINT - STAGE 5 STORMWATER OUTFALL TYPICAL DETAILS

RESOURCE CONSENT

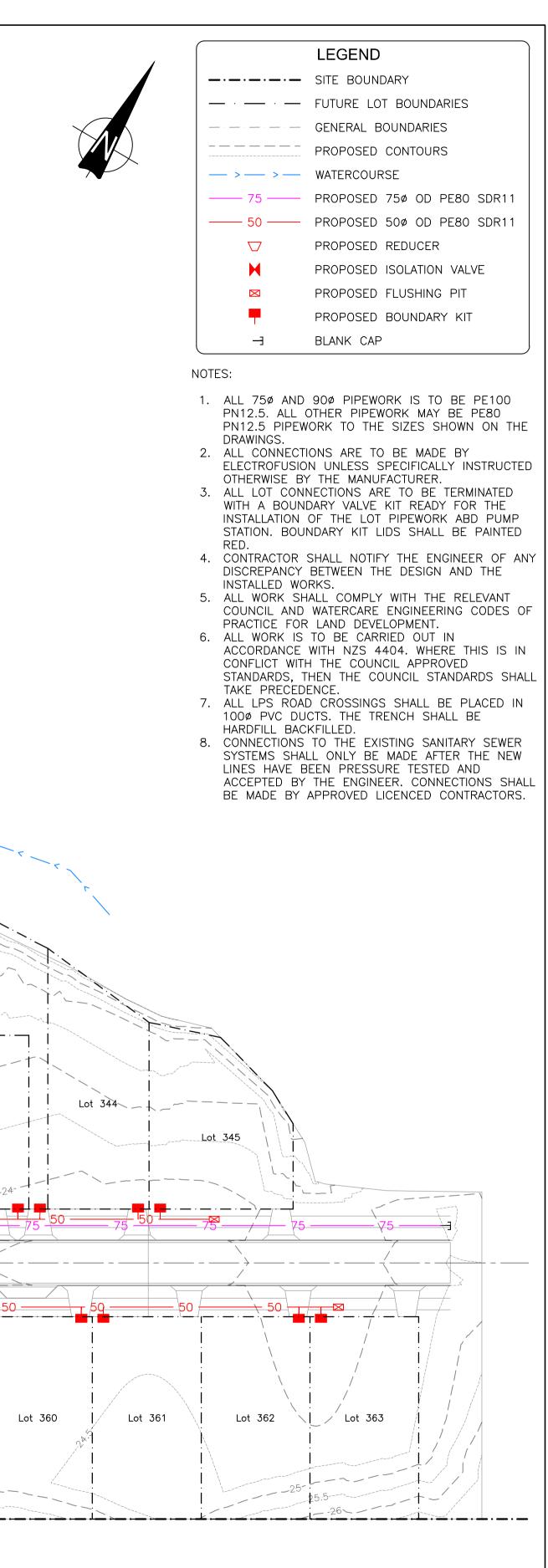
ACENZ ISO 9001 CERTIFIED

CADFILE 210359-362.dwg SCALE (A1) ORIG. SHEET SIZE 1:25 A1 DRAWING No. REV. 210359-362 1

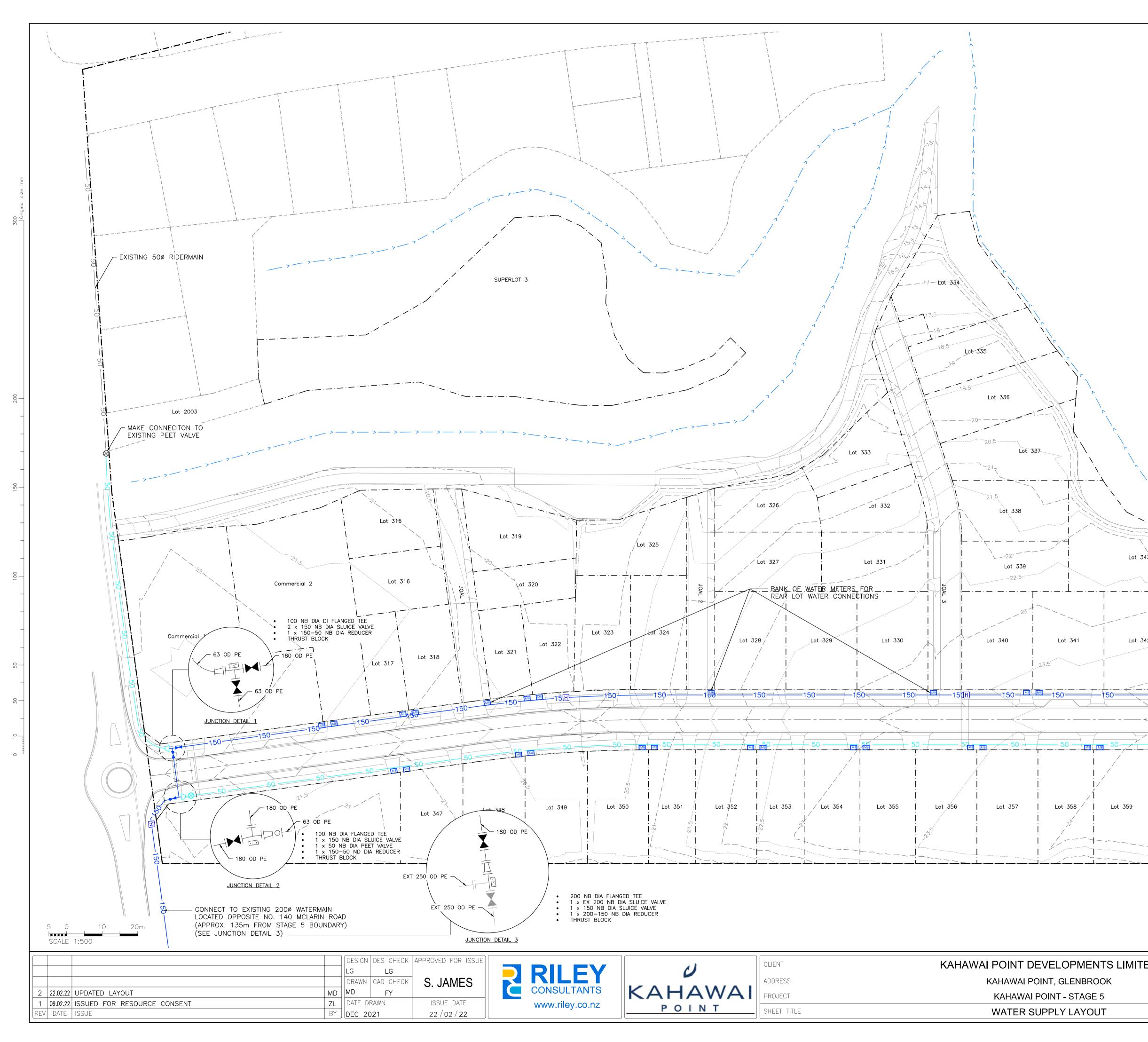
8

200

ID.	LOCATION	LENGTH (m)	WIDTH (m)	AREA (m ²)
RG1	ROAD 1 - SAG POINT - NORTH	17.59	2.96	51.98
RG2	ROAD 1 - SAG POINT - SOUTH	18.13	2.96	59.43
RG3	ROAD 1 - JOAL 3 - NORTH	14.00	1.96	27.37
RG4	ROAD 1 - JOAL 3 - SOUTH	14.00	1.96	27.37
RG5	JOAL 1 - NORTH	6.20	2.00	12.40
RG6	JOAL 1 - SOUTH	6.20	2.00	12.40
RG7	JOAL 2	7.30	2.60	18.98
RG8	JOAL 3 - NORTH (IRREGULAR)	7.00	3.60	25.20
RG9	JOAL 3 - SOUTH	10.10	2.00	20.20
RG10	M [°] LARIN ROAD	16.05	2.10	33.95


ΡΟΙΝΤ SHEET TITLE RAIN GARDEN PRELIMINARY DETAILS AND SIZES

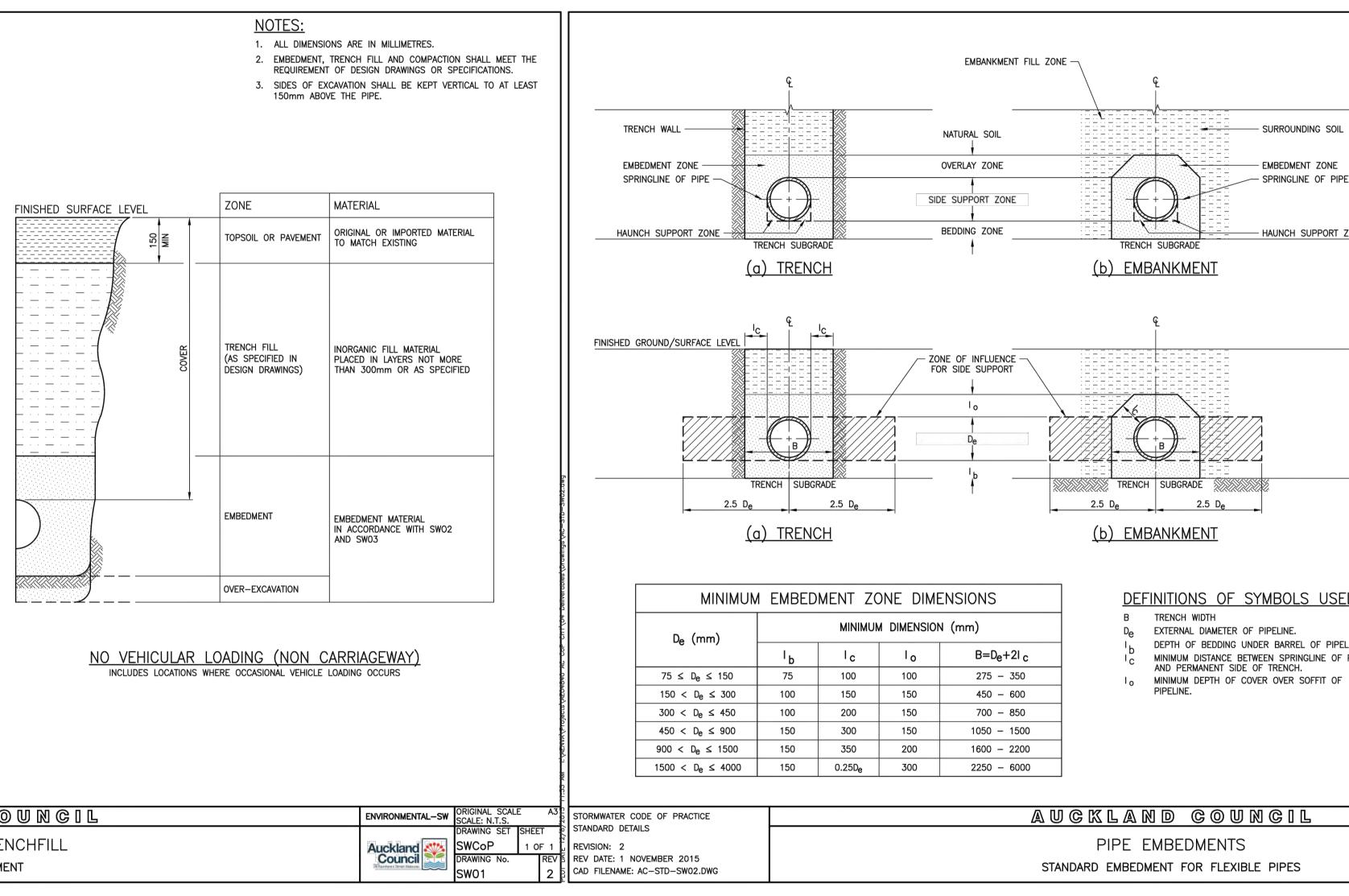
ACENZ
 ISO 9001 CERTIFIED


CADFILE 210359-363.	dwg			
SCALE (A1) 1:20	ORIG.		HEET 41	SIZE
DRAWING No.			RE	EV.
210359-363				1

LOW PRESSURE SEWER LAYOUT

	CADFILE 210359-364.dwg			
ACENZ	SCALE (A1) 1:500	ORIG. S	Sheet size A1	
ISO 9001	DRAWING No.	I	REV.	
GCS	210359-36	64	2	

)
	LEGEND	
	GENERAL BOUNDARIES	
	PROPOSED CONTOURS	
	> WATERCOURSE	
	50 EXISTING 50Ø RIDERMAIN	
	PROPOSED REDUCER	
	PROPOSED SLUICE VALVE PROPOSED WATERMETER BOX &	
	320D CONNECTION	
	H PROPOSED HYDRANT	
	-I BLANK CAP	
	NOTES:	, ,
	1. ALL METER CONNECTIONS ARE TO BE LOCATED IN THE ROAD RESERVE. DO NOT LOCATE ANY METER BOXES	
	INSIDE PROPERTY BOUNDARY.	
	2. ANCHOR AND THRUST BLOCKS ARE NOT REQUIRED WHERE FULLY RESTRAINED JOINTING SYSTEM IS USED,	
	IN ACCORDANCE WITH WSL CoP 6.3.12.11.13. 3. CONTRACTOR SHALL NOTIFY THE ENGINEER OF ANY	
	DISCREPANCY BETWEEN THE DESIGN AND THE INSTALLED WORKS.	
	4. ALL WORK SHALL COMPLY WITH THE RELEVANT COUNCIL AND WATERCARE ENGINEERING CODES OF PRACTICE FOR	
	LAND DEVELOPMENT.	
	5. ALL WORK IS TO BE CARRIED OUT IN ACCORDANCE WITH NZS 4404. WHERE THIS IS IN CONFLICT WITH THE	
	COUNCIL APPROVED STANDARDS, THEN THE COUNCIL STANDARDS SHALL TAKE PRECEDENCE.	
	6. ALL PIPEWORK GREATER THAN 63Ø SHALL BE PE100, PN12.5, PIPEWORK WITH ELECTROFUSION JOINTS.	
	JOINTS SHALL BE MADE BY CERTIFIED TRADESMEN.	
	7. 7. ALL WATERMAIN ROAD CROSSINGS SHALL BE HARDFILL BACKFILLED. ALL PIPEWORK PASSING UNDER	
	ROADS SHALL BE MINIMUM 1000. 8. CONNECTIONS TO THE EXISTING WATERMAINS SHALL	
	ONLY BE MADE AFTER THE NEW LINES HAVE BEEN PRESSURE TESTED, CHLORINATED AND ACCEPTED BY	
	THE ENGINEER. CONNECTIONS SHALL BE MADE BY	
	APPROVED LICENCED CONTRACTORS.	
\setminus		
	150 NB DIA DI FLANGED TEE	
	1 x 150 NB DIA SLUICE VALVE HYDRANT SUB OID	
F	180 OD PE • END CAP • THRUST BLOCK	
	180 OD PE	
	JUNCTION DETAIL 4	
	JUNCTION DETAIL 4 Lot 345	
	Lot 345	
	Lot 345	
	Lot 345	-
		-
		-
	Lot 345 50 50 50 50 50 50 50 50 50 50 50 50 50	
	Lot 345 50 50 150 150 150 50 50 150 50 150 50 150 50 150 50 150 50 150 50 150 50 150 50 150 50 150 50 150 1	
	Lot 345 50	
	Lot 345 Lot 345 50 50 150 10 10 10 10 10 10 10 1	
	Lot 345 50 50 150 150 150 50 50 50 150 150 50 50 50 150 150 150 50 50 50 150 150 150 150 150 150 150 150	-
	Lot 345 50	
	Lot 345 50 50 50 50 50 50 50 50 50 5	- ·
	Lot 345 50 50 50 50 50 50 50 50 50 5	
	Lot 345 50 50 50 50 50 50 50 50 50 5	
50 MB MB	Lot 345 50 50 50 50 50 50 50 50 50 5	
50 MB MB	Lot 345 150 150 150 150 150 150 150 15	
	Lot 345 150 150 150 150 150 150 150 15	
50 MB MB	Lot 345 150 150 150 150 150 150 150 15	
50 MB MB	Lot 345 150 150 150 150 150 150 150 15	


021 JOBS\210359 KAHAWAI POINT, WAIUKU\5.0 CADD\5.4 CURRENT\210359-365.DW(

0 -

300 | Or

	DESIGN DES CHECK APPROVED FOR ISSUE
	DESIGN DES CHECK APPROVED FOR ISSUE
	DESIGN DES CHECK APPROVED FOR ISSUE
1 09.02.22 ISSUED FOR RESOURCE CONSENT	LG LG

MATERIAL	ZONE	FINISHED SURFACE LEV
TO AUCKLAND TRANSPORT REQUIREMENTS	SURFACE COURSE	
TO MATCH EXISTING ROAD BASE OR TO AUCKLAND TRANSPORT REQUIREMENTS	ROAD BASE	
TRENCH FILL MATERIALS IN ACCORDANCE WITH SW02 AND SW03, COMPACTED IN LAYERS OF NOT MORE THAN 300mm OR AS SPECIFIED	TRENCH FILL (AS SPECIFIED IN DESIGN DRAWINGS)	
EMBEDMENT MATERIAL IN ACCORDANCE WITH SWO2 AND SWO3	EMBEDMENT	
	OVER-EXCAVATION	

VEHICULAR	LOADING	(CARRIAGEWAY)

AUCKLAND COUNCIL STORMWATER CODE OF PRACTICE STANDARD DETAILS EMBEDMENT & TRENCHFILL REVISION: 2 REV DATE: 1 NOVEMBER 2015 TYPICAL ARRANGEMENT CAD FILENAME: AC-STD-SW01.DWG

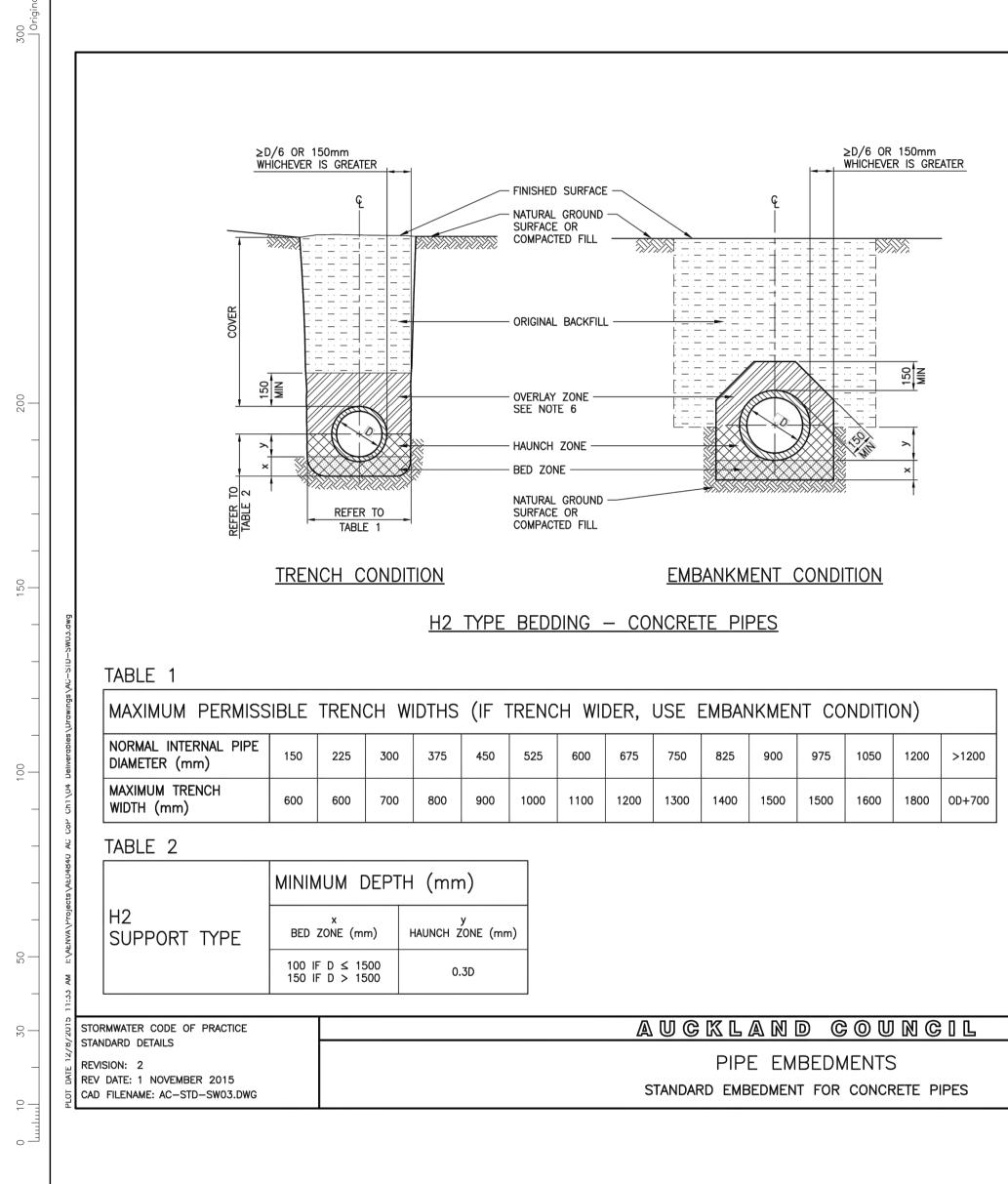
KAHAWAI POINT DEVELOPMENTS LIMITED KAHAWAI POINT, GLENBROOK KAHAWAI POINT - STAGE 5 STANDARD DETAILS- SHEET 1

NOTES:

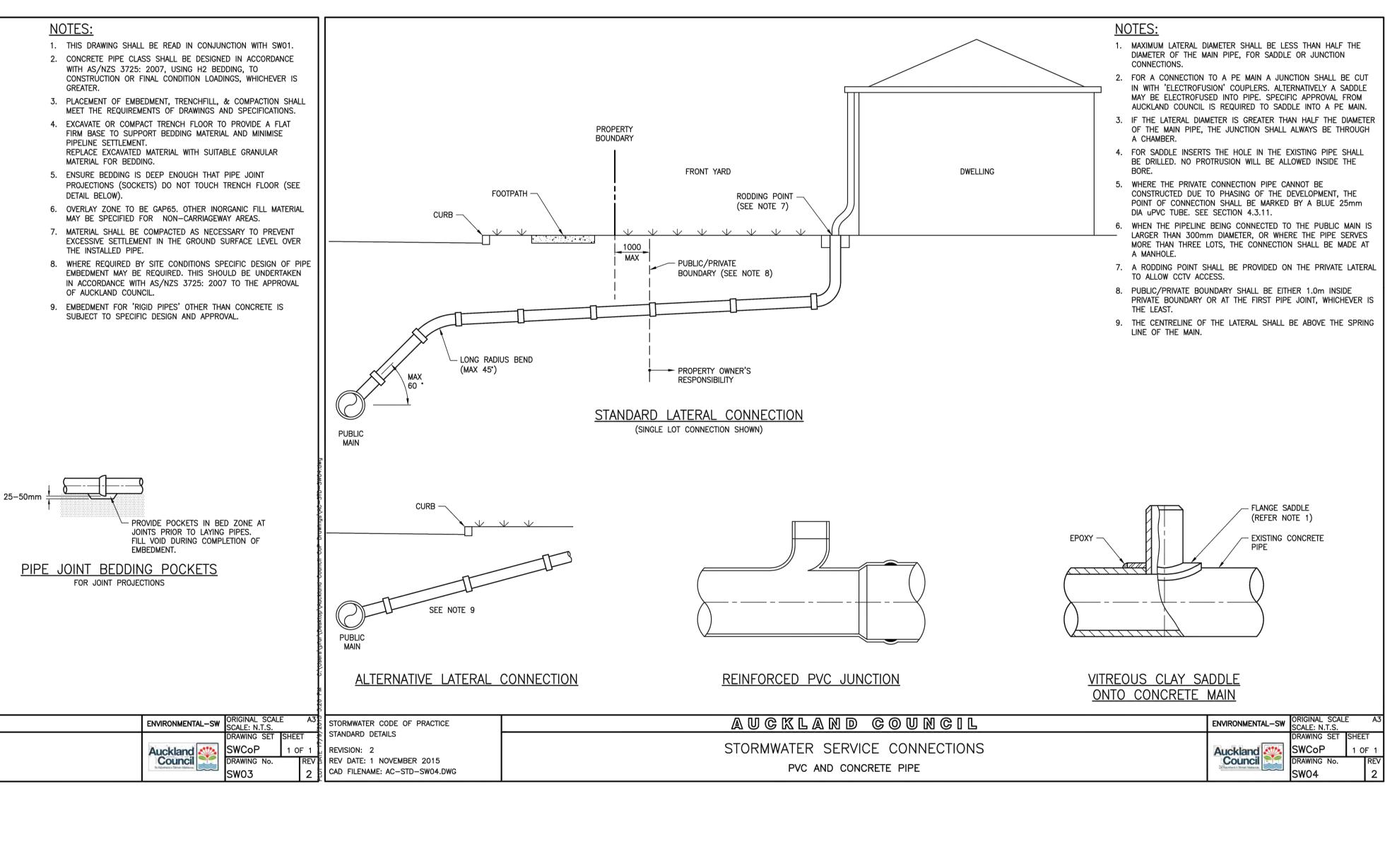
- 1. THIS DRAWING SHALL BE READ IN CONJUNCTION WITH SW01. 2. FLEXIBLE PIPES INCLUDES PVC, GRP, PP AND PE.
- 3. PLACEMENT OF EMBEDMENT, TRENCHFILL, & COMPACTION SHALL MEET THE REQUIREMENTS OF DRAWINGS AND SPECIFICATIONS.
- 4. EXCAVATE OR COMPACT TRENCH FLOOR TO PROVIDE A FLAT FIRM BASE TO SUPPORT BEDDING MATERIAL AND MINIMISE PIPELINE SETTLEMENT. REPLACE EXCAVATED MATERIAL WITH SUITABLE GRANULAR MATERIAL FOR BEDDING.
- 5. ENSURE THAT THE BEDDING IS DEEP ENOUGH SO THAT PIPE JOINT PROJECTIONS (SOCKETS, FLANGES) DO NOT TOUCH THE TRENCH FLOOR (SEE DETAIL BELOW).
- 6. BEDDING MATERIALS SHALL BE GAP/SAP < 12. 7. THIS DRAWING IS BASED ON AS/NZS 2566 PART 2: 2002
- "BURIED FLEXIBLE PIPELINES & INSTALLATION" AND REPRODUCED WITH THE PERMISSION OF STANDARDS NEW ZEALAND.

- EMBEDMENT ZONE - SPRINGLINE OF PIPE

HAUNCH SUPPORT ZONE


PROVIDE POCKETS IN BEDZONE AT JOINTS PRIOR TO LAYING PIPES. FILL VOID DURING COMPLETION OF FUNCTION OF EMBEDMENT PIPE JOINT BEDDING POCKETS FOR JOINT PROJECTIONS DEFINITIONS OF SYMBOLS USED: EXTERNAL DIAMETER OF PIPELINE. DEPTH OF BEDDING UNDER BARREL OF PIPELINE. MINIMUM DISTANCE BETWEEN SPRINGLINE OF PIPE AND PERMANENT SIDE OF TRENCH. MINIMUM DEPTH OF COVER OVER SOFFIT OF

◎ U N C I L		ORIGINAL SCALI SCALE: N.T.S.	E A3
ENTS		drawing set SWCoP	SHEET 1 OF 1
FLEXIBLE PIPES	To Käumheirä o Täheaki Mäkäumai	drawing no. SWO2	REV 2


RESOURCE CONSENT

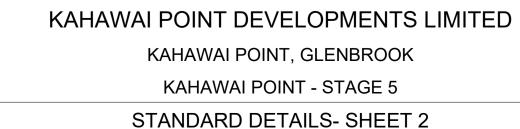
ACENZ ISO 9001 CERTIFIED

CADFILE 210359-366-	-374.c	dwg	
	ORIG.	SHEET	SIZE
NTS DRAWING No.			-\/
		EV. 1	
210359-36	00		l

				DESIGN	DES CHECK	APPROVED FOR ISSUE	
				LG	LG		\mathbf{D}
				DRAWN	CAD CHECK	S. JAMES	
				ZL	FY		CONS
1	09.02.22	ISSUED FOR RESOURCE CONSENT	ZL	DATE D	RAWN	ISSUE DATE	www.
REV	DATE	ISSUE	BY] DEC 20	021	04 / 02 / 22	

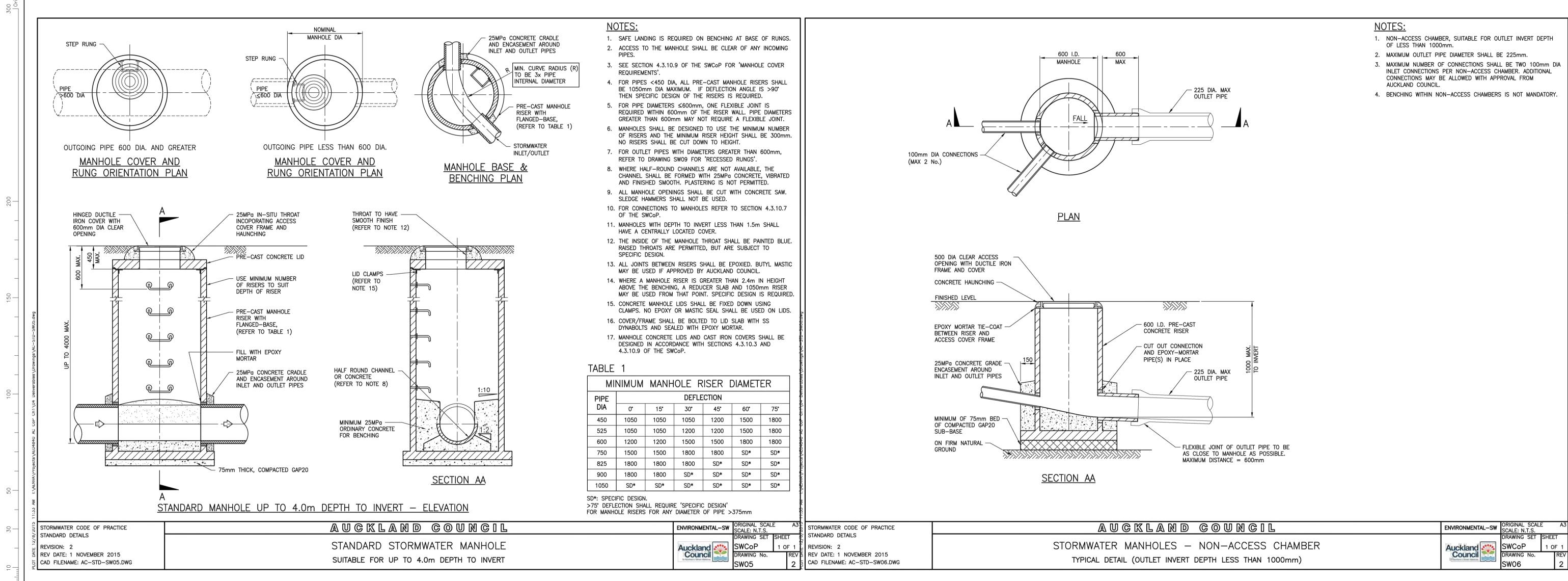
CLIENT

ADDRESS


PROJECT

SHEET TITLE

U


KAHAWAI

POINT

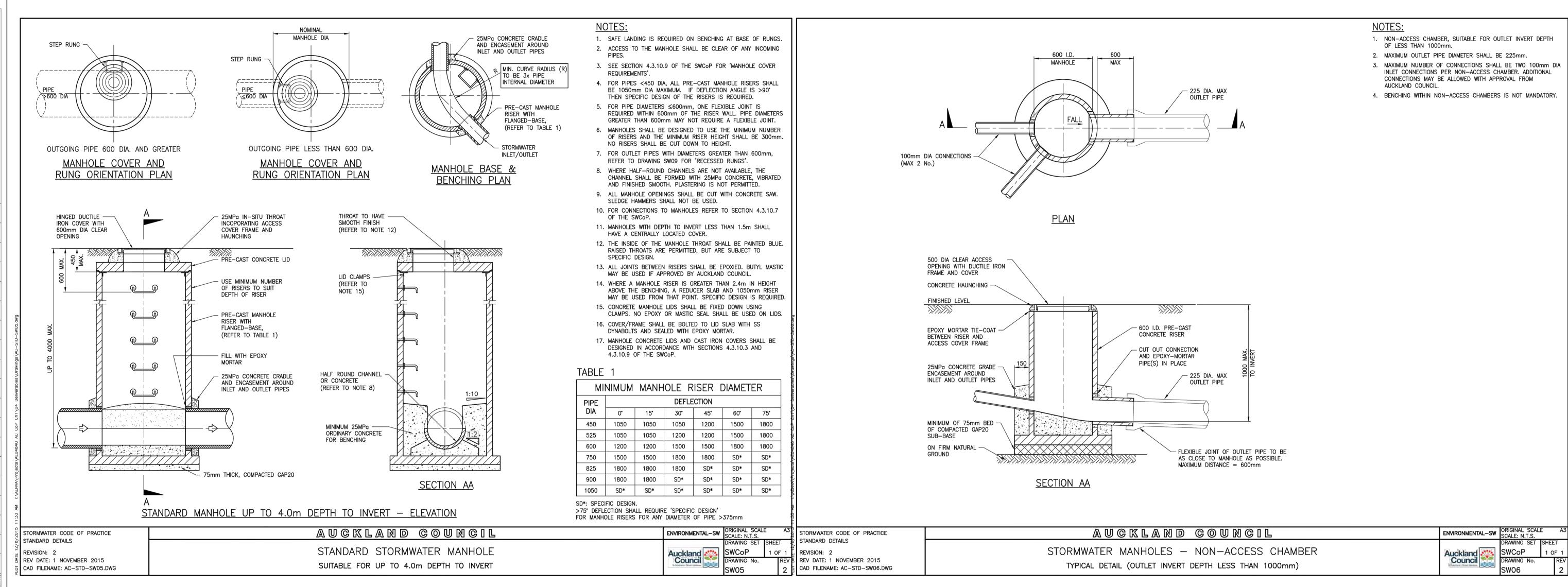
ACENZ
ISO 9001 CERTIFIED
✓ GCS

CADFILE				
210359-366-374.dwg				
SCALE (A1)	ORIG. S	SHEET	SIZE	
NTS		A1		
DRAWING No.	RE	EV.		
210359-367		-	1	

~			DE	ESIGN	DES CHECK	APPROVED FOR ISSUE	
			LG	5	LG		
			DF	RAWN	CAD CHECK	S. JAMES	
			ZL	-	FY		CONSU
1	09.02.22	ISSUED FOR RESOURCE CONSENT	ZLDA	ATE DF	RAWN	ISSUE DATE	www.ril
REV	DATE	ISSUE	BY	EC 20	21	04 / 02 / 22	

300 1 0,

		-	
ENVIRONMENTAL-SW	ORIGINAL SCALE A3 SCALE: N.T.S.	STORMWATER CODE OF PRACTICE	AUCKLAND CO
Auckland Council	DRAWING No. REV	STANDARD DETAILS REVISION: 2 REV DATE: 1 NOVEMBER 2015 CAD FILENAME: AC-STD-SW06.DWG	STORMWATER MANHOLES – NON TYPICAL DETAIL (OUTLET INVERT DEPTH



KAHAWAI POINT DEVELOPMENTS LIMITED KAHAWAI POINT, GLENBROOK KAHAWAI POINT - STAGE 5 STANDARD DETAILS- SHEET 3

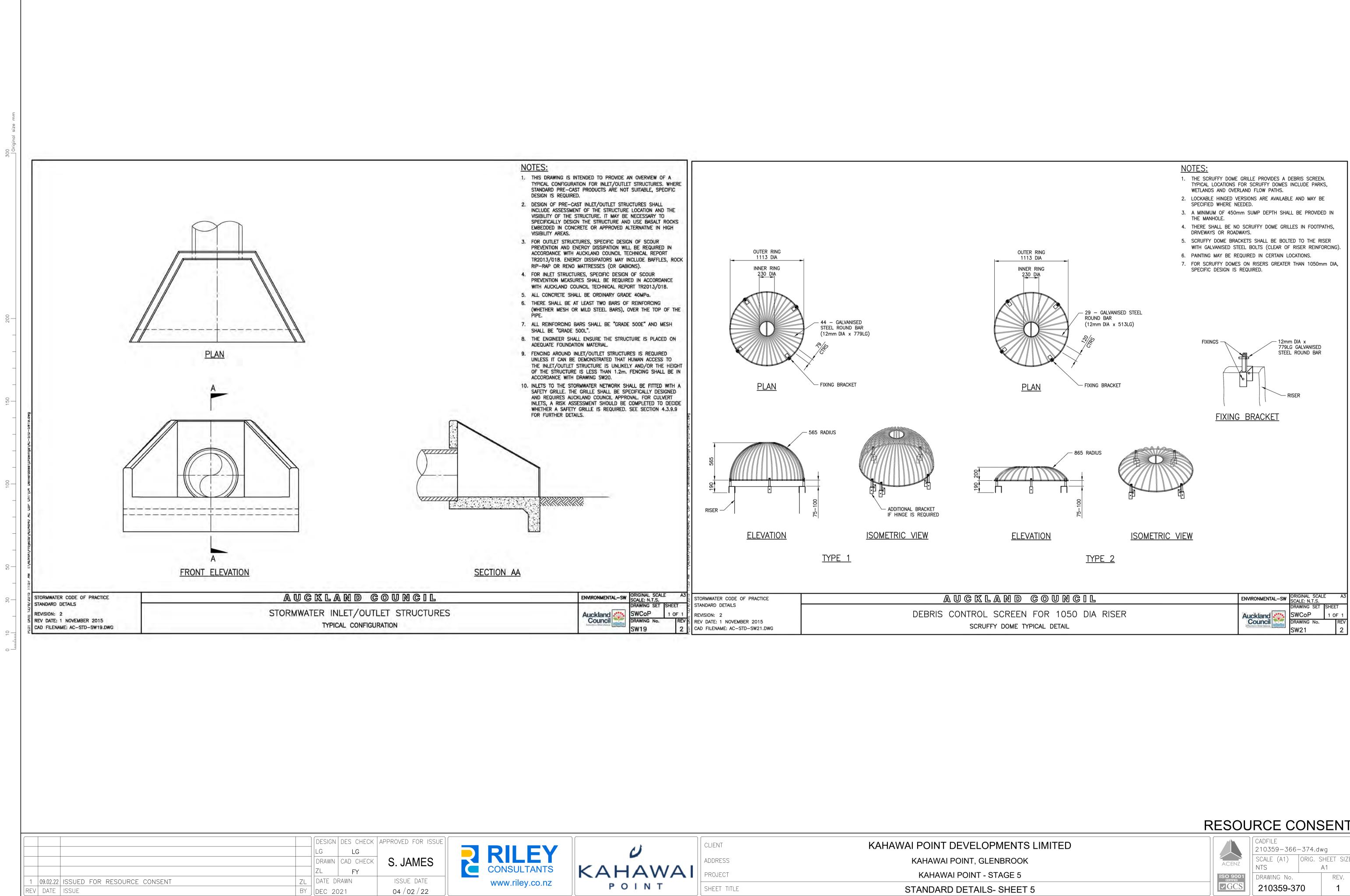
1

210359-366-374.dwg ORIG. SHEET SIZI SCALE (A1) NTS Α1 DRAWING No. REV. 210359-368

~			DE	ESIGN	DES CHECK	APPROVED FOR ISSUE	
			LG	5	LG		
			DF	RAWN	CAD CHECK	S. JAMES	
			ZL	-	FY		CONSU
1	09.02.22	ISSUED FOR RESOURCE CONSENT	ZLDA	ATE DF	RAWN	ISSUE DATE	www.ril
REV	DATE	ISSUE	BY	EC 20	21	04 / 02 / 22	

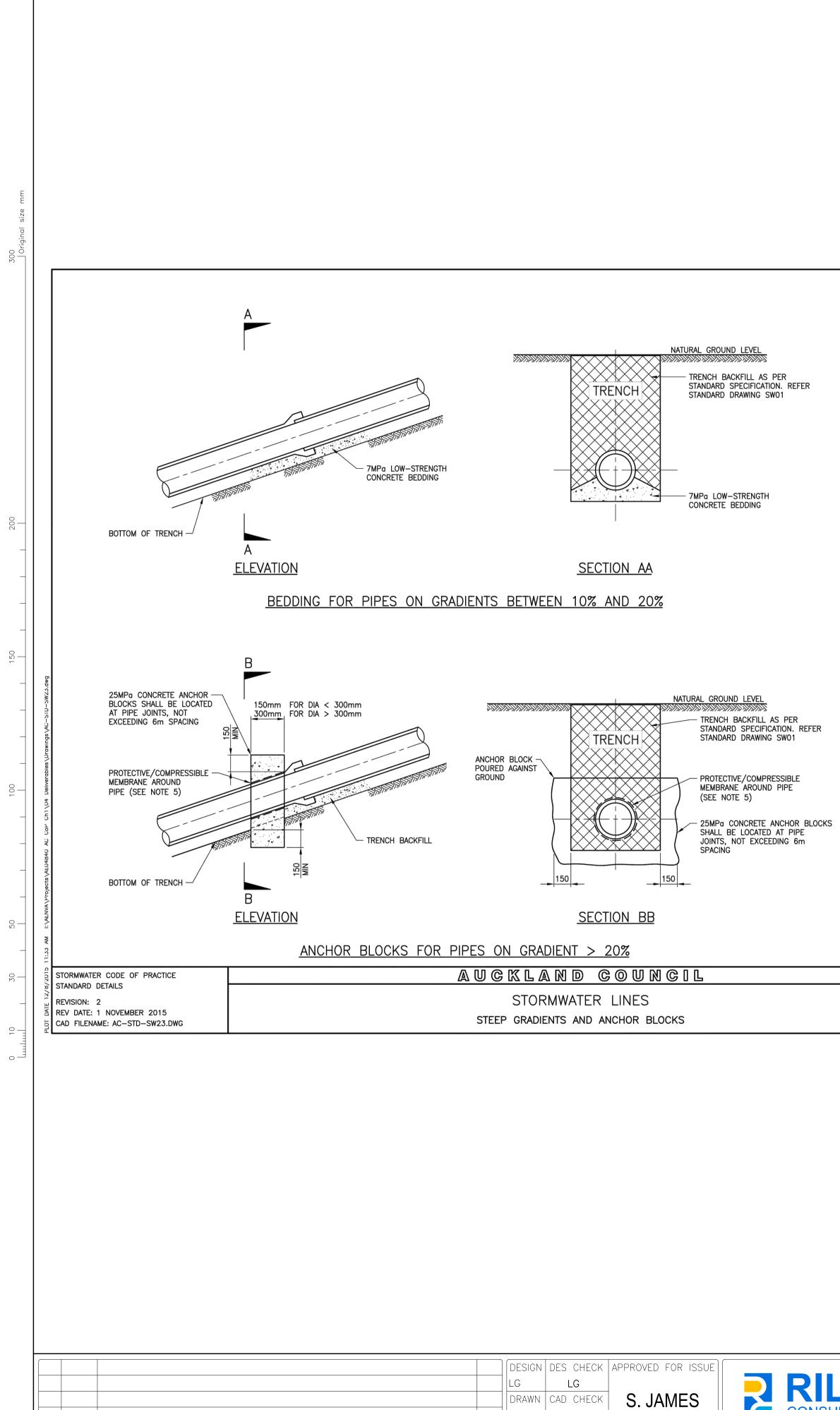
300 1 0,

200 |



KAHAWAI POINT DEVELOPMENTS LIMITED KAHAWAI POINT, GLENBROOK KAHAWAI POINT - STAGE 5 STANDARD DETAILS- SHEET 4

ACENZ	
ISO 9001 CERTIFIED	


CADFILE							
210359-366-374.dwg							
SCALE (A1)	ORIG.	SHEET	SIZ				
NTS		A1					
DRAWING No.		R	EV.				
210359-36		1					

O U N C I L	ENVIRONMENTAL-SW	ORIGINAL SCAL SCALE: N.T.S.	E A3
OR 1050 DIA RISER	Auckland	SWCoP	1 OF 1
AL DETAIL	Ne Kanzohora iz Titomal Matanzai	DRAWING No. SW21	REV 2

	CADFILI
ACENZ	SCALE NTS
SO 9001	DRAWIN
GCS	2103

CADFILE 210359-366-374.dwg			
SCALE (A1) ORIG. SHEET SIZE NTS A1			
DRAWING No.		REV.	
210359-37	210359-370		

ZL

1 09.02.22 ISSUED FOR RESOURCE CONSENT

REV DATE ISSUE

ZL DATE DRAWN

BY DEC 2021

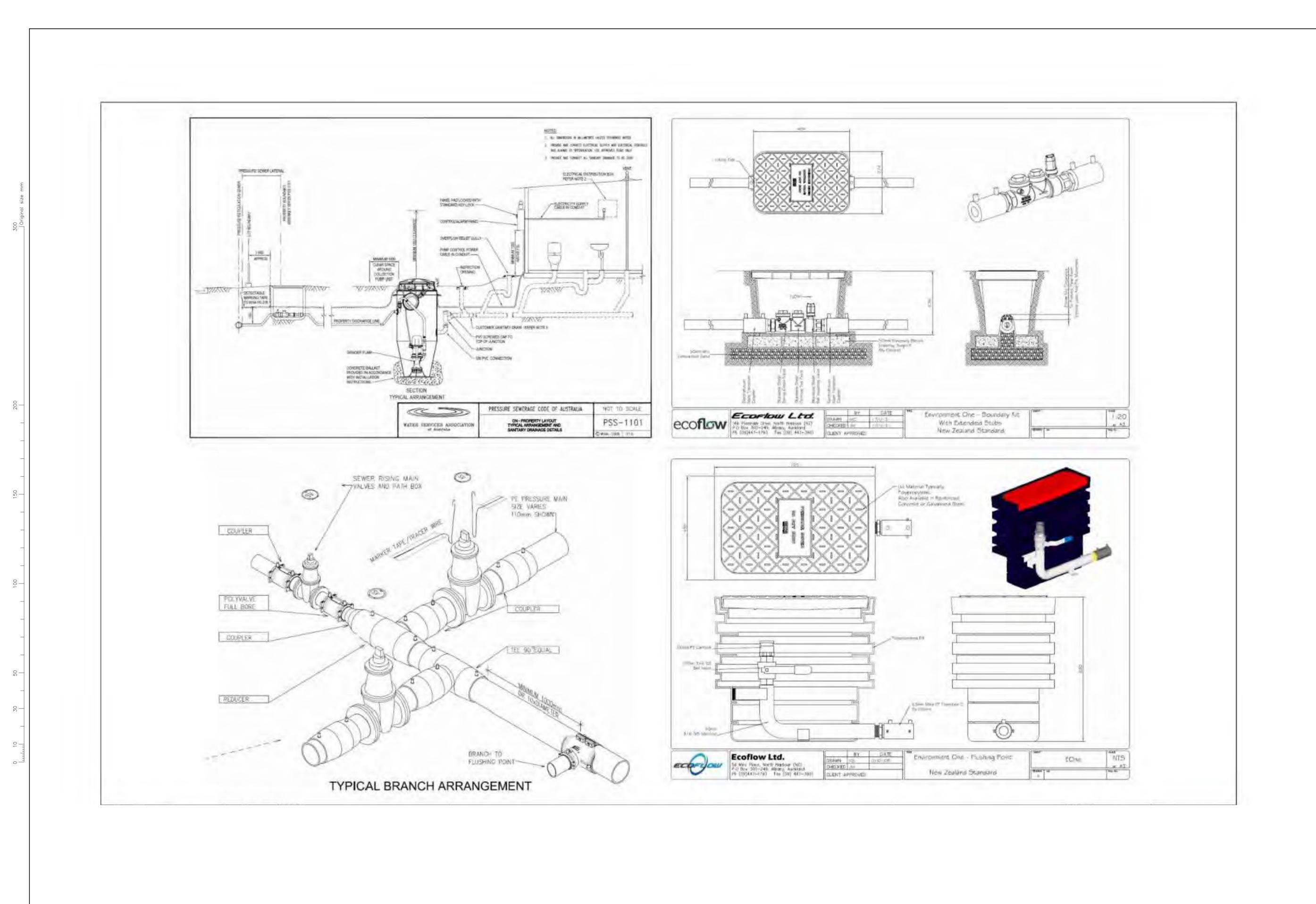
FY

ISSUE DATE

04 / 02 / 22

NOTES:

- 1. USE LOW-STRENGTH CONCRETE (7MPa) BEDDING FOR PIPES ON GRADIENTS BETWEEN 10% AND 20%.
- 2. USE ANCHOR BLOCKS FOR PIPES ON GRADIENTS STEEPER THAN 20% (1 IN 5).
- 3. SPECIFIC DESIGN AND SPACING MAY BE NEEDED FOR PIPES ON GRADIENTS >30% OR WHERE GROUNDWATER IS CONSIDERED SIGNIFICANT.
- 4. ANCHOR BLOCK TO BE CONSTRUCTED ON LOWER SIDE OF JOINT. 5. FLEXIBLE PIPE SHALL BE WRAPPED FOR LENGTH OF THE ANCHOR BLOCK AT THE CONCRETE INTERFACE. WRAPPING SHALL BE COMPRESSIBLE MATERIAL, (e.g. DENSO TAPE OR POLYETHYLENE FILM).
- 6. WHERE PIPES ARE EMBEDDED IN LOW-STRENGTH CONCRETE, A TRANSVERSE EXPANSION JOINT SHALL BE PROVIDED AT EACH JOINT.
- 7. FOR FLEXIBLE PIPELINES, UP TO 300mm DIA, ON GRADIENTS OF 10% AND GREATER, REQUIRED BENCHING DEPTHS WITHIN THE DOWNSTREAM MANHOLE CAN BE REDUCED, BY THE REDUCTION OF THE GRADIENT IMMEDIATELY OUTSIDE THE MANHOLE. THIS MAY BE ACHIEVED BY INSTALLING A MANUFACTURED, PRE-FORMED BEND WITH VERTICAL RADIUS MIN. 8x INSIDE PIPE DIAMETER.

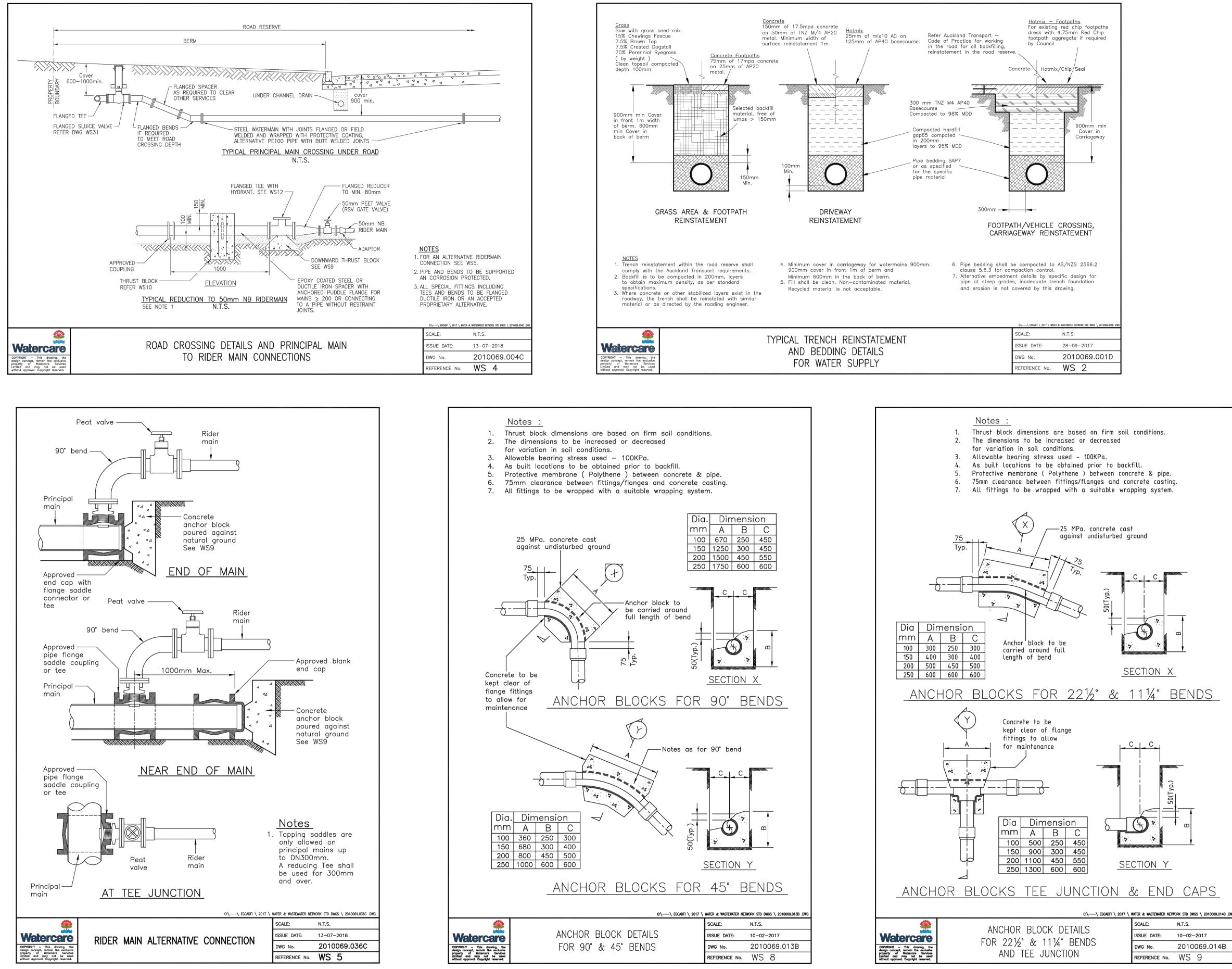

	ORIGINAL SCAL SCALE: N.T.S.	E A3
	DRAWING SET	SHEET
	SWCoP	1 OF 1
Council 🚞	DRAWING No.	REV
ter Addressed to Garden Selectorial	SW23	2

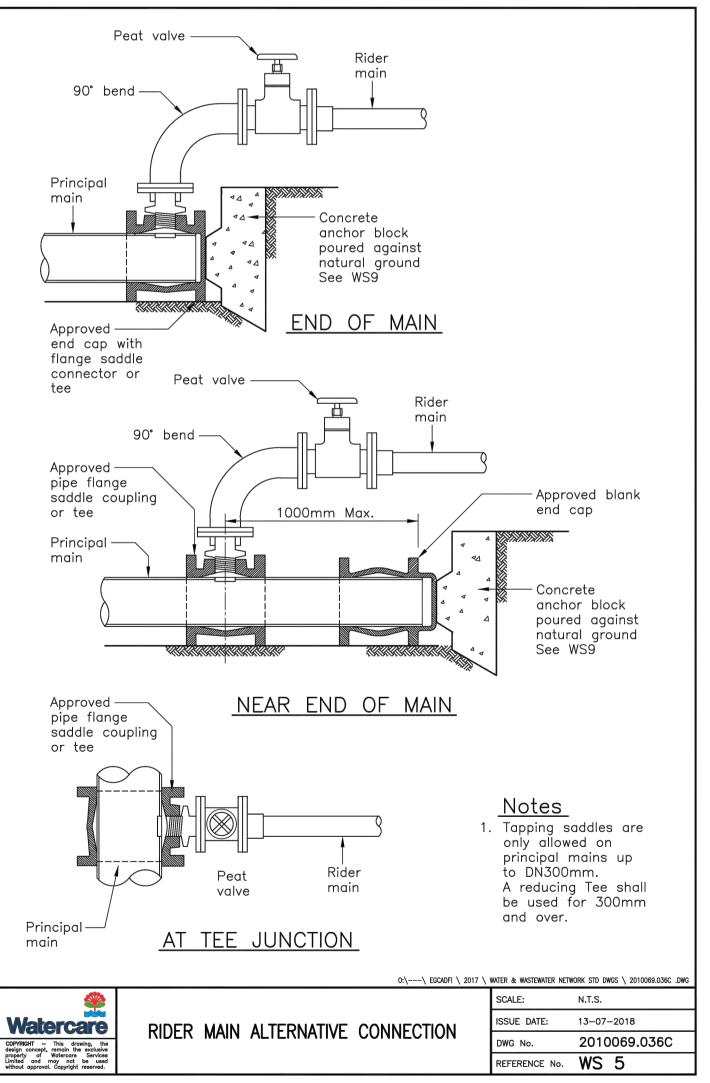
CLIENT U ADDRESS KAHAWAI PROJECT ΡΟΙΝΤ SHEET TITLE KAHAWAI POINT DEVELOPMENTS LIMITED KAHAWAI POINT, GLENBROOK KAHAWAI POINT - STAGE 5 STANDARD DETAILS- SHEET 6

ACENZ
ISO 9001 CERTIFIED

CADFILE 210359-366-374.dwg SCALE (A1) ORIG. SHEET SIZE NTS A1						
	210359-366-374.dwg					
	· · ·	·				
DRAWING No. REV. 210359-371 1			Re	EV. 1		

				DESIGN	DES CHECK	APPROVED FOR ISSUE	
			L	_G	LG		RI
			[DRAWN	CAD CHECK	S. JAMES	
			Z	ZL	FY		CONSU
1	09.02.22	ISSUED FOR RESOURCE CONSENT	ZL	date di	RAWN	ISSUE DATE	www.r
REV	DATE	ISSUE	BY	DEC 20)21	04 / 02 / 22	




CLIENT ADDRESS PROJECT SHEET TITLE KAHAWAI POINT DEVELOPMENTS LIMITED KAHAWAI POINT, GLENBROOK KAHAWAI POINT - STAGE 5 STANDARD DETAILS- SHEET 7

RESOURCE CONSENT

ACENZ

CADFILE				
210359-366-374.dwg				
SCALE (A1)	ORIG. S	SHEET SIZE		
NTS		A1		
DRAWING No.		REV.		
210359-372		1		

			DESIGN	DES CHECK	APPROVED FOR ISSUE	
			LG	LG		RI
			DRAWN	CAD CHECK	S. JAMES	
			ZL	FY		CONSU
1	09.02.22 ISSUED FOR RESOURCE CONSENT	ZL	DATE D	RAWN	ISSUE DATE	www.rile
REV	DATE ISSUE	BY	DEC 20	J21	04 / 02 / 22	

6

0-

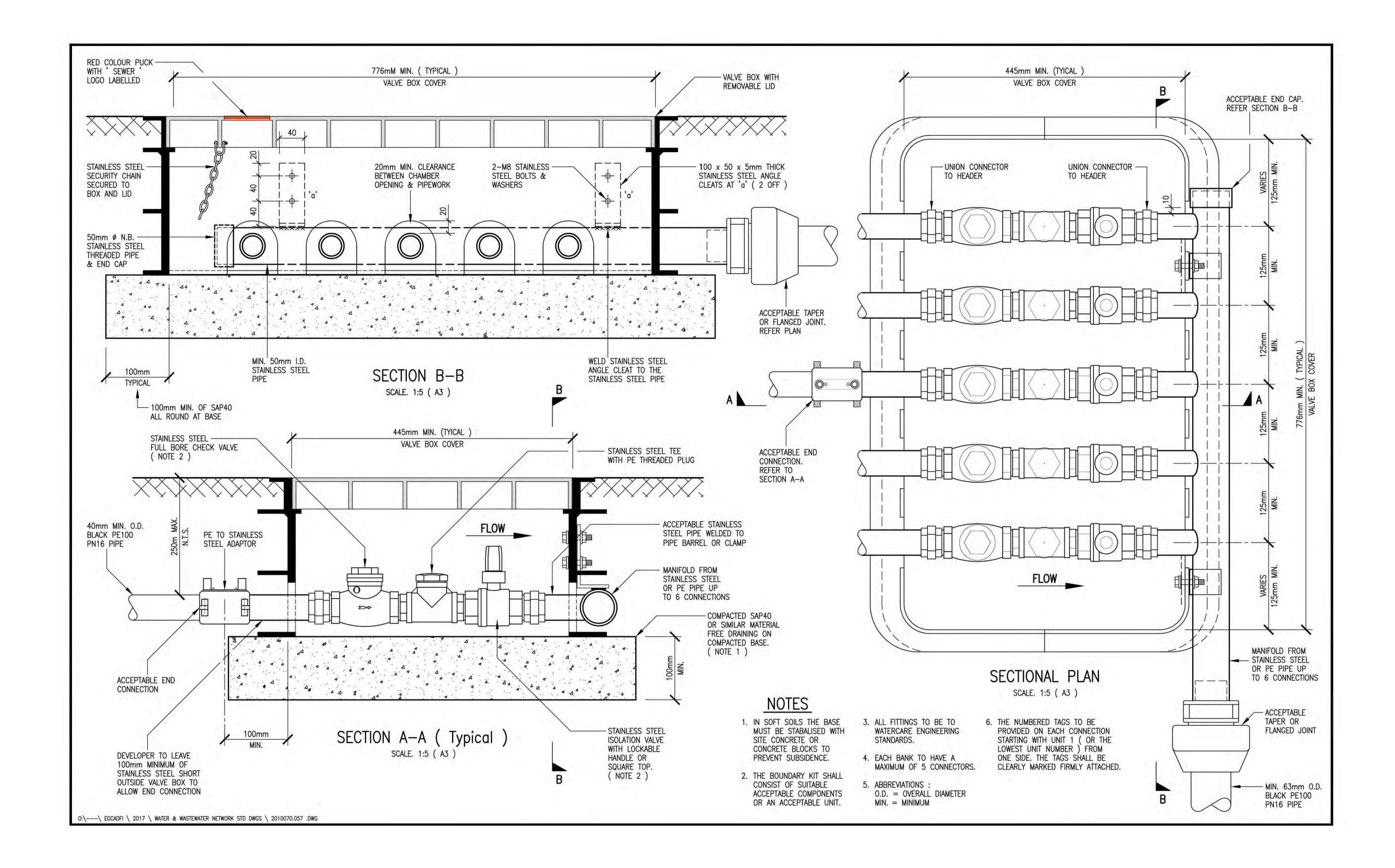
8

KAHAWAI POINT DEVELOPMENTS LIMITED KAHAWAI POINT, GLENBROOK KAHAWAI POINT - STAGE 5 **STANDARD DETAILS- SHEET 8**

ADDRESS KAHAWAI PROJECT SHEET TITLE

CLIENT

U


ΡΟΙΝΤ

EGCADFI \ 2017 \ WATER & WASTEWATER NETWORK STD DWGS \ 2010069.001D .DWG							
CALE:	N.T.S.						
SUE DATE:	28-09-2017						
VG No.	2010069.001D						
FERENCE No.	WS 2						

|--|

ACENZ ISO 900 ✓ GCS

CADFILE 210359-366-374.dwg ORIG. SHEET SIZ SCALE (A1) NTS Α1 DRAWING No. REV. 210359-373 1

		DESIG	N DES CHECK	APPROVED FOR ISSUE	
		LG	LG		
		DRAW	N CAD CHECK	S. JAMES	
		ZL	FY		CONSU
1 09.02.22	ISSUED FOR RESOURCE CONSENT	ZLDATE	DRAWN	ISSUE DATE	www.rile
REV DATE	ISSUE	BY JAN	2022	04 / 02 / 22	

300 | Or

CLIENT U ADDRESS KAHAWAI PROJECT ΡΟΙΝΤ SHEET TITLE KAHAWAI POINT DEVELOPMENTS LIMITED KAHAWAI POINT, GLENBROOK KAHAWAI POINT - STAGE 5 STANDARD DETAILS- SHEET 9

RESOURCE CONSENT

ACENZ ISO 9001 CERTIFIED

			•••				
CADFILE							
210359-366-374.dwg							
SCALE (A1)	ORIG. S	SHEET	SIZE				
NTS	A1						
DRAWING No.		REV.					
210359-374		1					